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Abstract

This thesis presents the Internet Application Modelling Language (IAML), a modelling language to

support the model-driven development of Rich Internet Applications (RIAs). This definition includes

a visual syntax to support the graphical development of IAML model instances, and the underlying

metamodel satisfies the metamodelling and viewpoint architectures of the Model-Driven Architecture.

While there are many existing modelling languages for web applications, none of these languages

were found to be expressive enough to describe fundamental RIA concepts such as client-side events

and user interaction. This thesis therefore presents IAML as a new language, but one which reuses

existing standards where appropriate. IAML is supported by the development of a proof-of-concept

reference implementation within the Eclipse framework, released under an open source license to

encourage industry use, that successfully integrates a number of different model-driven technologies

to demonstrate the expressiveness of the metamodel.

The IAML metamodel supports many features not found in other web application modelling lan-

guages, such as ECA rules, the expression of reusable patterns through Wires, and a metamodel core

based on first-order logic. Through the implementation of the RIA benchmarking application Ticket

2.0, the concepts behind the design of IAML have been shown to simplify the development of real-

world RIAs when compared to conventional web application frameworks.
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Chapter 1

Introduction

The invention and introduction of the Internet in 1969, and more significantly the World Wide Web in

1990, has had a massive and permanent influence on our lives [155]. While originally designed as a

purely informational medium, the web is increasingly evolving into an application medium supporting

complex software systems accessible through different devices. This evolution culminated in the

development of Rich Internet Applications (RIAs) to unify traditional desktop applications with the

distributed nature of the web [33].

1.1 Web Applications

As discussed by Berners-Lee and Fischetti [25] and illustrated in Table 1.1, the World Wide Web was

originally envisaged as a medium to share documents, but the dynamic publication of content soon

followed. These dynamic server-side applications became the first web applications, which reversed

the conventional architecture of software applications at the time.

Conventional software applications were generally designed to be installed or downloaded onto

a single machine, and executed locally on the client. Web applications are instead designed to ex-

ecuted remotely on a web server, and the client simply renders the results within a web browser.

This approach had significant advantages: processing power could be centralised onto a single server,

reducing the performance requirements of clients; software updates could be applied automatically,

lowering the total cost of ownership of the software [191]; and software could now be accessed by a

wider audience across a wide variety of devices.

As the popularity of the World Wide Web increased, new concepts and technologies soon followed

[220]. The foundation of the World Wide Web Consortium (W3C) in 1994 standardised many of these

technologies, such as HTML [294], XML [302] and CSS [304]. Over time, web applications became

more distributed and independent, and service-enabled web applications [192] could be developed

using technologies such as WSDL [?], REST [84] and RSS [258].

However, these conventional web applications suffered from poor responsiveness; could not be

used offline; and their interfaces were not as effective as desktop interfaces [33]. This was because

all interaction had to adhere to request-response cycles over relatively slow network connections.

Furthermore, once an application has been implemented with a particular selection of technologies,

its interpretation by the client’s web browser may differ, exacerbated by the continuing browser wars

between competing developers [?].

In the early 2000s, the use of client-side scripting to dynamically modify the web application
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Year Era Scenarios Standards Platforms

1990
World Wide

Web

WorldWideWeb

1991 Document sharing HTML Tags, HTTP 0.9

1992

1993

Web

Applications

Server-side scripting CGI Mosaic

1994 Netscape Navigator

1995 Interactivity Java Applets, HTML 2.0 Internet Explorer

1996 Client-side scripting CSS, ActiveX, Javascript Opera

1997 HTML 4.0

1998 ASP, CSS 2, XML Mozilla

1999

Service-

Enabled Web

Applications

RSS, HTML 4.01, JSP

2000 PHP 4, XHTML, REST

2001 Web services WSDL 1.1

2002 Mozilla Firefox

2003 SOAP 1.2 Safari

2004 Semantic web RDF, OWL

2005

Rich Internet

Applications

Mashups OpenID, Javascript 1.6 Flock

2006 XMLHttpRequest

2007 Push events WSDL 2.0 iPhone, Prism

2008 Google Chrome

2009 Cloud computing OWL 2, OCCI Android 2.0

2010 OAuth

2011 . . . . . . HTML 5, CSS 3, . . . . . .

Table 1.1: A Brief History of Web Application Technologies

(known as dynamic HTML, or DHTML) became popular, and in 2005 the term AJAX – standing for

Asynchronous Javascript and XML – was introduced by Garrett [108]. By embracing this additional

functionality, these richer applications attempted to reduce the impact of slow network connections

and improve the interactivity of their interfaces. For example, the input validation of a text field could

now occur asynchronously through background network requests, rather than waiting for validation to

only occur through the request-response cycle to the server.

The term “Rich Internet Application” was first introduced in a Macromedia whitepaper in 2002,

describing the unification of traditional desktop and Web applications in an attempt to leverage the

advantages and overcome the drawbacks of these architectures [33]. Rather than simply providing new

types of user interface elements, RIAs aim to improve all of the aspects of interactivity, accessibility

and reliability in a web application.

The range of technologies to implement RIAs continued to expand, and the development of an RIA

now requires the integration of dozens of different technologies and concepts [220]. Mikkonen and

Taivalsaari [208] have argued that the complex and tangled structure of RIAs resembles the spaghetti

programs of the 1960s and 1970s. Disciplines such as Web Engineering have been established to

improve the quality of Web applications [155, pg. 3], but the development effort necessary to combine

all of these technologies together continues to be an issue.
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1.2 Modelling

By simplifying a system into an abstraction, models are already used extensively in software de-

velopment, improving developer productivity [90]; for example, domain-specific models, relational

database schemas, and programming languages are all different forms of models. System models

may also be evaluated against verification tools and processes, to ensure that the model satisfies the

requirements of the system, and to identify potential design or security flaws.

The application of models to web application development has shown promising results [268],

with languages such as WebML [43], UWE [170] and UML [227]. In one case study, Acerbis et al.

found that applications modelled in WebML only needed a third of the development effort compared

to using conventional development techniques [1]. However, these existing languages (as discussed

later in Section 2.4) focus on conventional web applications, and cannot model essential RIA concepts

such as client-side events and user interaction [323].

In order to obtain the benefits of applying model-driven techniques to web application develop-

ment – such as improved productivity, security and documentation – this thesis will investigate the

development of a modelling language for RIAs. It is unclear whether the fundamental concepts of

RIAs could be “bolted on” to an existing language, or whether a language will need to be designed

from scratch.

1.3 Research Questions

The absence of a suitable modelling language for Rich Internet Applications, along with the increasing

complexities offered today by user-oriented interactivity in rich web applications, leads to the thesis

statement:

The development of a modelling language for interactive web applications will address

many of the challenges currently faced in web development; in particular, improving the

reliability, usability and security of the modelled applications, and simplifying their de-

velopment and maintenance.

This thesis statement is naturally broken down into six key research questions, which will each be

addressed and highlighted throughout the course of this thesis:

1. What interactive web application concepts and technologies introduce unique challenges for the

modelling of these web applications?

2. What are the shortcomings of modelling interactive web applications using existing modelling

approaches?

3. Can a modelling language be developed, either from the extension of an existing language or

the development of a new language, to address these challenges?

4. What techniques are available to improve the maintainability of a modelled interactive web

application?

5. Can it be shown that an interactive web application modelling language increases the reliability,

usability and security of the underlying system?
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6. Similarly, can it be shown that such a modelling language improves the development process,

in terms of speed, simplicity and consistency?

1.4 Research Design

The design of a piece of given research is often described in terms of qualitative or quantitative re-

search, as summarised by Creswell [55]. The research design is a major consideration in the process

of designing the research method and selecting the types of research questions which will be asked.

Importantly, Creswell argues that these designs are not mutually exclusive, but rather that particular

research questions tend to be more of one method than the other.

Quantitative research focuses examining relationships between well-defined variables, often using

statistics, in order to investigate a research problem; these research questions are usually framed in

terms of numbers and open-ended questions. Qualitative research, on the other hand, focuses on

exploring and understanding the meaning of a problem creatively, with answers proposed through

induction. These questions are usually framed in terms of words and closed-ended questions.

There appears to be little or no previous research or theory explicitly into the design of RIAs.

While two very similar research areas – web applications, and – have been the focus of extensive

research, there is little work in unifying these two areas. In this research, a qualitative research design

is used, as the research problem is closely characterised as a qualitative research problem, as discussed

by Creswell [55] and Morse [214]:

1. The concept is “immature” due to a conspicuous lack of theory and previous research. While

there is a large body of research, and to a lesser extent theory, into the related topics of Internet

applications and hypermedia, the body of work for RIAs is significantly less.

2. A notation that the available theory may be inaccurate, inappropriate, incorrect, or biased. The

only available theory on RIAs are derived from the component topics of web applications and

hypermedia, and each of these topics fail to consider fundamental concepts from the other.

3. A need exists to explore and describe the phenomena and to develop theory. By proposing a

modelling language for RIAs, we will be attempting to identify the core concepts and constructs

of RIAs. These proposals will undoubtedly help in developing a theory for RIAs as a whole,

although this is outside the scope of this thesis.

4. The nature of the phenomenon may not be suited to quantitative measures. The development

of modelling languages is difficult and expensive, and their success is strongly linked to the

success of its implementation [90]. Evaluating languages are also difficult and expensive, and it

would be difficult to provide a large enough sample size for conclusive evaluations.

However, it is also important to note that in the process of addressing the thesis statement quali-

tatively, a number of experiments were also performed quantitatively. The results from these exper-

iments – such as evaluating the performance of model completion discussed by Wright and Dietrich

[324], and the implementation metrics discussed later in Section 2.6 – can then be used to support the

thesis statement.
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1.5 Research Method

While keeping the selected research design of qualitative research in mind, a detailed research method

can be proposed. For this research, this method consisted of the following steps, which are each

discussed in detail in the body of this thesis. As part of the research process, the outcomes of a

number of these steps have been published and peer-reviewed externally.

1. Identify the requirements and features of Rich Internet Applications; identify the requirements

and existing work into developing other modelling languages, including strengths and weak-

nesses and existing evaluations; and outline existing future work in this area. From this research,

the decision whether to extend an existing language, or develop a new language from scratch,

can be made. These requirements have been published earlier by Wright and Dietrich [323].

2. Investigate and propose a number of methods in which to evaluate the proposed modelling

language; this could include methods such as quality criteria, language metrics, expressibility

checklists, user evaluations, and so on. In this thesis, one such method resulted in the develop-

ment of the benchmarking application Ticket 2.0, which has been published earlier by Wright

and Dietrich [322].

3. Investigate methods in simplifying the effort necessary for a model developer to develop and

maintain a model-driven implementation, possibly through the use of frameworks, inference or

conventions. Some of these results have been published earlier by Wright and Dietrich [324].

4. Perform an extensive amount of prototyping and exploratory design work to adapt existing meta-

models, propose new modelling constructs, and experiment with visual syntax. The knowledge

gained in this prototyping stage will be used to inform the intended design.

5. From this top-down design, develop a proof-of-concept CASE tool and incrementally imple-

ment this software following an evolutionary software process model. Follow agile develop-

ment processes to improve feedback and evaluation, and to adapt to technology changes in the

RIA industry. This tool is available online under the terms of the Eclipse Public License [71] at

http://code.google.com/p/iaml/.

6. During this implementation stage, frequently evaluate the implementation against the final re-

quirements and intended design. Refactor or remove elements from the implementation as ap-

propriate.

7. Once this implementation is complete, evaluate the design implementation against the previ-

ously defined evaluation criteria, to understand the strengths and weaknesses of this particular

approach.

8. Investigate a wide range of formal verification methods, and prototype each method with the

proof-of-concept implementation of the proposed modelling language. The subsequent evalu-

ations may be used to discuss the suitability of supporting formal verification directly with the

modelling language itself.

http://code.google.com/p/iaml/
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1.6 Thesis Outline

The remainder of this thesis follows the sequential order of the proposed research method in the

previous section, and will be summarised here.

Chapter 2 discusses the state of the art and related work in the field of modelling RIAs. Two suites of

modelling language requirements are discussed, and a benchmarking application called Ticket

2.0 is introduced. The chapter concludes with a short discussion on software engineering meth-

ods, one which will be used in the proof-of-concept implementation.

Chapter 3 provides an in-depth investigation into the many aspects and concepts involved in system

modelling, such as domain-specific languages, model-driven development, visual modelling

and model verification. The technology of model completion is introduced and defined, which

is used later to simplify the end-user development effort of the proposed language.

Chapter 4 provides an in-depth discussion into all of the fundamental RIA concepts that will be con-

sidered as part of the proposed modelling language. For each concept, a variety of technologies

used to implement the concept are investigated, and their relevant benefits and drawbacks are

discussed. The chapter concludes with a discussion on visual modelling techniques and best

practices.

Chapter 5 details the design, approach and rationale behind the proposed modelling language, named

the Internet Application Modelling Language (IAML). For each fundamental RIA concept, a set

of modelling constructs are proposed, along with their rationale and semantics. The semantics

of the inference rules and platform-specific implementation notes are instead provided in Ap-

pendix ??.

Chapter 6 details the evaluation process used to select the implementation technologies that form the

basis of the proof-of-concept implementation in the Eclipse framework.

Chapter 7 then provides a detailed decomposition of the proof-of-concept implementation in terms

of the components necessary to implement the final system.

Chapter 8 evaluates the proof-of-concept implementation of IAML against the evaluation criteria

discussed in the Background chapter, along with the evaluation of the implementation of the

Ticket 2.0 benchmarking application.

Chapter 9 concludes the thesis with a discussion on the overall research contributions and outlines

areas of future research.

This thesis also consists of a number of appendices, including:

Appendix ?? lists the existing Rich Internet Applications used to identify the overall categories of

RIA requirements in Chapter 2.

Appendix A details the suite of 69 use cases developed as part of the process to identify the detailed

requirements of RIAs in Chapter 2.

Appendix F illustrates the architecture and complexity of implementing the infinitely redirects model

verification constraint using the NuSMV model verifier, as discussed in Section 6.6.8.
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Appendix ?? presents the full metamodel documentation of the IAML language, inference rules and

platform-specific implementation notes, as generated by ModelDoc from the source code of the

language.

Appendix J illustrates the incomplete implementation of Ticket 2.0 using IAML, and is provided in

both a graphical format, and the underlying XMI representation of the model.

Appendix ?? describes the content of the media attached to this thesis. This media includes a redis-

tributable copy of the proof-of-concept IAML modelling environment, along with its full source

code, and copies of the XMI model instances used throughout this thesis.





Chapter 2

Background

In this chapter, the key concepts and topics behind this research project will be discussed in further

detail. The current state of the art in web application modelling research will be presented, along with

a suite of requirements and evaluation techniques that have been developed to evaluate these modelling

languages.

2.1 Rich Internet Applications

In the previous chapter, a brief history of web applications and RIAs were introduced. In this section,

some specific details of RIAs will be discussed, including a summary of technologies that may be

used to implement an RIA; implementation classifications; a definition of what interactivity actually

means; and on the impact of enterprise-level software.

2.1.1 Technologies of Rich Internet Applications

Kappel et al. defines a web application as “a software system based on technologies and standards

of the World Wide Web Consortium (W3C) that provides Web specific resources such as content and

services through a user interface, the Web browser” [155, pg. 2], and this definition is used in this

thesis. The underlying architecture of the web application considerably influences its quality, and

many potential architectures exist as discussed by Eichinger [77]; for the nature of this thesis, the web

application architecture illustrated in Figure 2.1 will be assumed.

As discussed by Nussbaumer and Gaedke [220], the development of a web application involves

the particular combination of a number of components and technologies within a chosen architecture,

and may include:

1. Presentation technologies such as various HTML dialects [294, ?, 303] or CSS [304];

2. Server-side languages such as C/C++, PHP, Java, Ruby, Perl, Python, or Haskell;

3. Client/server communication protocols such as SMTP, HTTP, cookies, or sessions;

4. Configuration file formats such as XML [302], YML [243], JSON [56] or flat text files;

5. Application platforms such as Flash [60], Silverlight [317], J2ME [286] or Java Applets [61];

6. Web service languages such as SOAP [300], REST [84], XML-RPC [318], or WSDL [?]; and
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Figure 2.1: A reasonable architecture for Rich Internet Applications

7. Database query languages such as versions of SQL (MySQL, PostgreSQL, NoSQL and others),

OQL, or LINQ.

One of the reasons that web application development is so complex is simply dealing with the

combinatorial nature of these technologies. For example, the choice of a content markup language

– between HTML, XHTML and HTML 5 – will dictate the results of applying an instance of a CSS

stylesheet, and some web browsers do not implement these content markup languages correctly.

The Acid series of web browser tests were created in an effort to improve the compliance of web

browsers to standards [35, ?], but many still fail to fully implement these standards correctly, hindering

web development [?]. The choice of architecture also has a significant impact on the scalability and

reliability of deploying the application [40].

Rich Internet Applications introduce three new categories of technologies and platforms – client-

side scripting languages, modules and databases – to this already significant repository of potential

technologies, as illustrated in Figure 2.1. In particular, a RIA will be implemented1 using some of the

conventional web application technologies discussed earlier, along with any number of the following

additional technologies:

1. Client-side scripting languages such as Javascript [75], or VBScript [163];

1As an example, Section ?? discusses the implementation of a standard RIA which required the use of 16 different

technologies.



2.1 Rich Internet Applications 11

2. Client-side modules such as CommonJS [176]; and

3. Client-side databases such as Google Gears [114] or HTML 5 [303].

This further increases the complexity of interactions between all of the components. For example,

Flash is commonly used to play video content, but is not available on the iPhone platform [313]; how-

ever, older browsers cannot support the new video features of HTML 5, so some form of backwards

compatibility must be supported by the RIA.

2.1.2 Classifications of Rich Internet Applications

While the individual technologies and platforms selected for the implementation of a particular RIA

may differ, the architectures of these applications may be classified into four categories, as described

by Bozzon et al. [33]:

1. Scripting-based, in which client-side logic is implemented via scripting languages, and inter-

faces are based on presentation technologies such as HTML and CSS;

2. Plugin-based, where browser plugins integrate application platforms into the browser itself,

such as Flash, Silverlight or Java Applets;

3. Browser-based, where client-side interactivity is natively supported by the browser in a browser-

specific way, such as ActiveX [107] and XUL [32]; and

4. Web-based desktop technologies, where software applications are downloaded and executed

over the Internet, but executed using a different platform, such as Java Web Start [194] and

Adobe Air [2].

Since this work by Bozzon et al. was published, a fifth category – Desktop-based web applications

– has emerged. These are RIAs that appear to be native applications to the end-user and are executed

away from the web browser, but are actually standard RIAs within a browser wrapper [?]. These

technologies include Mozilla Prism [216] and Fluid [67].

However, these categories are not mutually exclusive; it is possible (and in many cases necessary)

to have a RIA that covers multiple categories. For example, a client-side application (scripting-based)

could also need to interact with the Google Gears plugin [114] (plugin-based) in order to emulate

offline functionality.

Some related research in describing interactive web applications adapts research from hypermedia

applications, which refers to the mixture of hypertext and multimedia [244, 245], although hypermedia

usually refers to standalone proprietary user interfaces [17]. Web applications can be considered low-

level hypermedia applications [178]; however web applications adds unique challenges to system

requirements – such as security, performance, usability, navigability and internationalisation [110] –

that existing surveys tend to neglect.

2.1.3 Interactivity

The term “interactivity” can be a controversial term, as discussed by Gane and Beer [106]. Interactivity

does not refer to a list of requirements of an interface, but rather is a variable measure of the ways in

which a system supports or requires interaction. Almost all types of media are interactive; Manovich



12 2 Background

[193] argues that even sculpture and architecture are interactive media, because the demand the viewer

to move to appreciate the structure.

Consequently, it is not possible to compare the interactivity of two different media types, but the

term rather refers to differences in the way a system is presented. The consensus seems to be that

increased forms of interactivity are beneficial, and provide more usable and effective user interfaces

[246]. However, it is widely accepted that conventional web applications have less interactivity than

Rich Internet Applications [33, 245, 323].

2.1.4 Enterprise Software

Instances of software can be categorised according to their challenges, development complexities and

intended domain [155, pg. 5–7], and certain applications may be categorised as enterprise software.

There is no precise definition of an “enterprise application”, however they often possess common

characteristics and design goals.

Some of the characteristics of enterprise software, in terms of functional and non-functional re-

quirements, are discussed by Fowler [89]. These characteristics include needing to persistently store a

lot of data; supporting concurrent data access; handling many user interface screens; expressing com-

plex business logic; integrating with other enterprise applications; and supporting the reuse of data in

semantically diverse ways.

Enterprise applications must also possess “reasonable performance characteristics”. This non-

functional requirement is often measured using metrics such as scalability, latency and throughput.

To improve the success rate of developing enterprise applications, certain application design patterns

should be used [89].

2.2 Frameworks

A practical solution to bridging the conceptual gap in web development is through the use of a frame-

work, which is “a reusable, ‘semi-complete’ application that can be specialised to produce custom

applications” [81]. By taking a pragmatic approach, frameworks are popular in industry due to rapid

development time and stability. The distinctions between frameworks, programming languages and

modelling languages are discussed later in Section 3.1.11.

The Ruby on Rails framework [284] has arguably been one of the most influential frameworks for

the development of web applications, which inspired the Symfony for PHP [243] framework. Other

popular server-side frameworks include Struts for JSP [7]; Seaside for Smalltalk [79]; Spring for Java

[152]; and Spring.NET for ASP.Net [278].

The common tasks faced by the client-side scripting aspect of RIAs has also been addressed

through a number of client-side frameworks, such as JQuery [184] and the Prototype Javascript Frame-

work [249]. Recently, some web application frameworks such as Google Web Toolkit [131] and

Symfony [243] have combined both server-side and client-side functionality, to provide the first Rich

Internet Application frameworks.

Frameworks solve a number of problems in complex software development. They often provide or

generate common infrastructural source code2 specific to a particular domain; for example, Symfony

can automatically generate object-relational mapping source code from a defined Propel schema [243].

2This is often called boilerplate code, referring to how the code can often be included in new contexts without requiring

significant change.



2.3 Features of Rich Internet Applications 13

They can also provide an abstraction layer upon a number of different technologies; for example, PDO

for PHP [183] provides database abstraction to ten different relational database managers.

Finally, client-side frameworks can abstract away differences in browser implementations; for

example, the Prototype Javascript Framework provides a common Ajax component, which performs

identically across different browsers [249]. In these ways, frameworks can adapt to the fragmentation

of different technologies, which is especially pronounced in the field of RIA development.

Extending a framework to work in different problem domains is a significant issue; in many cases,

additional complexity must be introduced into the framework, or the framework may need to be re-

architectured. The runtime overhead of using a framework as opposed to a native application is another

concern, due to the large libraries that they require as illustrated later in Section ??.

The distinction between a framework and a programming language is generally well-defined.

While both aspects provide a level of abstraction, a programming language usually has its own syntax,

semantics and implementation into a lower target language (e.g. through compilation) [265]; whereas

a framework reuses (or extends) the syntax and implementation of existing programming languages.

Similarly, the distinction between a framework and a modelling language is also generally defined in

the same way; that is, a modelling language has its own syntax, semantics and optional implementa-

tion, whereas a framework reuses an existing programming language.

A framework is therefore ideal for providing a domain-specific abstraction within an existing

general-purpose software development environment, whereas a modelling language is ideal for pro-

viding the same abstraction in a platform-independent manner. In both cases, however, a framework

can be used as part of the implementation of either a programming language or a modelling language;

although Kelly and Pohjonen note that many modelling languages suffer the problem of adhering too

closely to a particular framework [159].

2.3 Features of Rich Internet Applications

In order to effectively evaluate existing approaches in modelling RIAs, comprehensive sets of evalu-

ation criteria need to be defined. In this research, two sets of evaluation criteria were defined. The

first set of criteria define a general list of feature categories that can be evaluated subjectively against

a modelling approach, as defined by Wright and Dietrich in 2008 [323]. The second set of criteria fo-

cuses solely on the functionality of modelling approaches to define a comprehensive list of modelling

requirements, as defined by Wright and Dietrich in 2008 [322].

2.3.1 Feature Categories

An informal evaluation process was used to identify the general feature categories of modelling RIAs

[323]. This process involved the general overview of some of the first popular Rich Internet Applica-

tions of the time, to identify general categories. The results of this evaluation was the identification of

thirteen feature categories, which will now be briefly summarised in this section.

Events

Web applications are inherently event-driven, as web servers respond to incoming request events from

clients. Events are particularly important to RIAs as they are more sensitive to interactivity and asyn-

chronous events, and events can either occur locally (on the client) or remotely (on the server). Remote
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events permit a client to communicate with the server and with other clients, and the server can com-

municate directly to the client (e.g. through a pushlet).

Since events are such a fundamental part of the web, it may be useful to promote events as first-

class citizens3 in a RIA modelling language. A RIA modelling language should be able to describe

events, which may in turn conditionally execute defined actions.

Browser Interaction

The web browser is the client-side user interface of a web application [155], and consequently must

be considered when modelling RIAs. A RIA modelling language should be able to model navigation

concepts, such as the “back” button or out-of-order navigation; storing data on the client through

cookies or offline databases; opening additional windows; identifying available scripting and plugins

support; and being able to identify the user agent, and being able to respond appropriately [323].

Lifecycle Management

The events and conditions surrounding the creation, termination, and state changes of a software

element can be expressed as its lifecycle. Lifecycles are more than just firing events, and can add

contextual information to fired events, or group similar events in a well-defined way. While lifecycles

are not necessary to implement an RIA, the concept can simplify the development of certain types

of web application. For example, a JSP servet may trigger events when the servlet is initialised or

destroyed (the init and destroy methods) [141]; likewise, a browser window may trigger events

when it is loaded or unloaded (the onload and onunload handlers) [294].

Users

It is important to identify different web application users, identified using particular credentials with

respect to a certain access policy. Users are therefore an important part of web applications, with

the term user referring to both people and non-human entities4. Most web applications deal with the

creation, management and authentication of user accounts, so a RIA modelling language should also

promote users to first-class citizens. RIAs may also support collaborative interaction between different

users.

Security

The security of a web application should be an inherent property of a designed application. Sensitive

or private data should not be unnecessarily disclosed, and should be unavailable to those without

appropriate permissions; likewise, it should not be possible for a malicious user to corrupt or otherwise

circumvent the intentions of the application developer.

Security concerns include both authentication and authorisation, two distinct processes that are

sometimes mistaken [204]. Authentication involves validating the identity of a certain party, often

in order to permit them access. Authorisation, on the other hand, is the definition of which rights

and permissions a certain party will have once access is granted. Open standards for distributed

3A first-class citizen represents an element that can be represented indirectly by a variable or expression, as opposed to

a second-class citizen, which can only be used directly [281].
4For example, software that utilises a web service can also be considered a user.
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authentication and authorisation on the web have recently been announced, such as the OpenID [250]

and OAuth [129] standards, respectively.

Databases

The vast majority of web applications are concerned with the integration with databases, in essence

becoming data-intensive web applications [44, 43]. Abstraction of data access to a persistent domain

model can increase the database-independence, reliability and development productivity of the appli-

cation [243], and a wide variety of existing domain models – such as UML class diagrams [227] and

ER diagrams [46, 247] – already exist. A RIA modelling approach should also support the common

use cases of users uploading content, and describing offline functionality provided by offline toolkits,

discussed earlier in Section ??.

Messaging

Messaging encompasses the entire concept of sending contextual data from one device to another. In

web applications, e-mail was once the most popular and accessible form of messaging, but a rapid

increase in communication mediums have introduced many new ways of communicating. In RIAs,

this includes domains such as sending e-mails; sending short text messages to mobile phones; invoking

and responding to web services; using RSS feeds and public APIs; and using OpenID authentication.

User Interfaces

RIAs provide an extended suite of user interface elements to web browsers, such as maps, calendars

and autocompletion [322]. A modelling language for RIAs should support a wide suite of existing and

new user interface elements. The integration of the presentation and underlying models of a RIA tend

to remain strongly correlated [8], often following best practice architectures such as the Model-View-

Controller (MVC) design pattern [173]. A RIA modelling approach should therefore support these

best practices, yet simultaneously not be restricted to a single architecture.

Standards Support

Innovations on the web occur very quickly and frequently [220, pg. 111], and the most popular in-

novations codified and shared through standards, such as the W3C standardisation of HTML [294]

and DOM [296, 295], and the ECMA standardisation of Javascript [87]. To improve acceptance by

the web development community, a RIA modelling approach should embrace new innovations where

possible, but overwhelmingly adhere to existing standards.

Platform Independence

As discussed earlier, a web application may be implemented on any number and combination of tech-

nologies. Since a model is an abstraction, a RIA modelling approach should not be limited to a single

combination; the model should be platform-independent to permit deployment on any number of plat-

forms. A platform-independent model also allows for incorrectly implemented standards on certain

platforms to be ignored, as workarounds can be deployed automatically. Platform independence also

adheres to the viewpoint modelling architecture advocated by the OMG, as discussed later in Sec-

tion 3.1.5.
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Use of Metamodels

A modelling approach should consider itself as part of a larger model-driven development commu-

nity. The Model-Driven Architecture (MDA), for example, discusses the interaction between models,

meta-models and the real world [69]. These model-driven standards aim to improve the reliability

and interchangeability of different model instances. A full discussion on modelling is provided in

Chapter 3.

Verification

It is possible to describe a model instance that is valid according to the syntax of a modelling language,

but unusable according to informal standards outside of the language definition. For example, dead-

locks may be expressed in most procedural programming languages, even though this is generally not

desirable in software applications [133]. It is preferable to identify these errors as early as possible, as

defect amplification dramatically increases the relative cost of correcting errors once they have been

made [247, pg. 197–205].

Verification allows the analysis of such model instances to identify these problems, and this is

discussed in greater detail in Chapter ??. Verification is already used against conventional web appli-

cations for scenarios such as detecting dead links or unreachable code [280], but there is little research

in using verification against RIAs. For example, some RIAs allow multiple users to work concur-

rently on a single document; a verification tool to locate potential deadlock and resource starvation

code may be beneficial. Consequently, a RIA modelling language should investigate integrating these

checks into its implementation.

Software Support

Finally, a RIA modelling language should be supported by software tools, such as a dedicated CASE

tool for designing model instances, code generators, or analysis tools [266]. Proof-of-concept imple-

mentations of a language can be used as a reference implementation for further work, and can increase

language acceptance by the development community [90]. For model-driven approaches, Kent [160]

argues that a software implementation is essential in order to maximise the benefits of using mod-

els. However, a single software implementation can be at odds with keeping the language platform-

independent; to an extent, platform- or technology-dependent implementation concerns should be

prevented from modifying the design of the modelling language [159].

2.3.2 Detailed Modelling Requirements

While these feature categories are useful for quickly evaluating a RIA modelling approach, their sub-

jective nature is not useful in performing a detailed evaluation, or to specifically identify missing

functionality. Subsequently, the functionality of seven popular Rich Internet Applications were inves-

tigated in detail, as discussed in Appendix A. Each application was investigated in order to identify

the individual features that are a result of the RIA domain, rather than from business or design de-

cisions. For each requirement, a use case was filled out, describing the actors, sequence, pre- and

post-conditions, exceptions, related use cases and other interesting comments [247].

From this survey, 69 use cases of RIA features were identified; this suite of use cases are re-

produced here in Appendix A. These use cases were then summarised into a suite of 59 individual
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Figure 2.2: Hypertext Model of a simple WebML application

functionality requirements, as described in Wright and Dietrich [322] and republished here in Ap-

pendix B. This suite of detailed requirements may then be used to perform a detailed evaluation of

a modelling language in terms of its modelling functionality, without having to rely on subjective

measurements.

2.4 Existing Web Application Modelling Languages

Web application modelling has been extensively researched, and many reviews and surveys of ex-

isting approaches exist. Selmi et al. [273] provides an excellent survey of some of the fundamental

problems with existing approaches. Other reviews concern themselves with evaluating the functional

requirements of languages [125, 8], and consistently find that existing languages are inadequate due

to deficiencies in expressibility, usability or implementation support. A discussion on the suitability

of model-driven approaches is discussed later in Section 3.1.

In this section, a range of existing RIA modelling approaches will be briefly discussed. This eval-

uation had been performed earlier by Wright and Dietrich [323], which identified that these existing

languages tend to either be abandoned or poorly implemented. This section will instead focus on

new research that has emerged since this evaluation was published, with regards to RIA modelling

techniques.

2.4.1 WebML

WebML is a well-researched and commercialised approach to modelling data-intensive web appli-

cations [43]. Web applications are described using five models, of which the hypertext model (the
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combination of the composition and navigation models) is the most important. In Figure 2.2, a simple

web application for publishing CD reviews is illustrated. These models are combined together using

code generators and custom XSLT templates [301] to generate the final Java-based application, which

can then be published onto a web server.

The language is well-supported with a CASE tool called WebRatio, which is still actively de-

veloped but at the time of writing, has not been extended to implement new modelling approaches,

such as recent client/server extensions to the model [93]. This CASE tool is commercialised and

closed-source which hinders extensibility, although there is some support for plugins. With regards

to supporting RIAs, it appears that WebML is focused on supporting conventional data-driven web

applications, and instead attempts to “bolt on” RIA support to the WebML model, instead of using

RIA concepts fundamentally.

Wright and Dietrich [323] found that WebML was the most complete modelling language for

web applications, yet lacked support for many of the fundamental concepts of RIAs, such as object

lifecycles, user interface modelling, and controlling the browser. Following the publication of this

review, the WebML authors agreed that WebML was lacking these important features [93].

2.4.2 UML

UML is a general-purpose modelling language for the analysis, design and implementation of software

systems and other similar processes [227], which can include web applications and RIAs. However,

this flexibility impacts on its suitability as a RIA modelling language. UML model instances are often

verbose and extremely informal, with a lot of domain knowledge assumed. Common web concepts

such as sessions, timed events and e-mails are difficult to describe with standard UML, and extensions

are usually required.

As UML does not have a defined set of formal semantics and implementation rules [101], it is not

possible to take an arbitrary UML model instance and translate it into a functional piece of software.

This negatively impacts the suitability of UML as a modelling language for RIAs, as UML therefore

needs to be extended – which is likely to spawn platform-dependent UML model instances that cannot

integrate with other UML model instances. Some authors argue that UML should not capture code-

level semantics, such as Fu et al. [101]; however, this viewpoint suggests that UML is therefore strictly

for documentation-purposes only, negating many of the benefits of model-driven approaches.

The OMG recommends extending UML through the use of three key extension mechanisms;

stereotypes, tagged values, and constraints [36]. In particular, a stereotype is defined as “a kind of

Class that extends Classes through Extensions” which are applied to an existing metaclass5 [227, pg.

670], allowing domain-specific terminology to be provided against a base UML model. The formal

combination of a particular set of extensions can be published as a single UML Profile [102]. In prac-

tice, only the stereotypes of a UML Profile are supported by existing CASE tools [264], and constraints

defined by UML Profiles are poorly supported.

UML’s extensibility is entirely additive; you cannot remove existing UML notations or create new

operations, without creating an entirely new UML derivative language [36]. Bruck and Hussey argue

that DSLs provide more precision and less complexity, and recommend extending UML only if the

majority of your concepts easily map onto existing UML concepts [36].

Nevertheless, one UML extension, UWE – discussed in the next section – has emerged as a

5The UML term metaclass may also be known as the defining metamodel class for a given instance of a metamodel

element.



2.4 Existing Web Application Modelling Languages 19

Figure 2.3: Navigation Structure model of a simple UWE application, adapted from Koch

[170]

promising candidate for modelling web applications. Another extension of UML by Conallen [51]

also attempts to extend UML to describe web applications, and can translate the model into a func-

tional web application; however this approach is very limited and dated, compared to UWE. A third

extension, WUML [156], attempts to add models to describe web concepts, such as events and user

profiles; these models appear to be intended for documentation and extensions, rather than describing

applications themselves.

2.4.3 UWE

UML-based Web Engineering [171] is a web application modelling language extension to UML, fol-

lowing the UML extensibility requirements [36], which has a heavy focus on using modelling stan-

dards. UWE uses more types of models than WebML6, but advocates using automatic and semi-

automatic tools to assist the developer in constructing these models7.

Compared to WebML, the model instances are often more verbose but the individual model ele-

ments are simpler; this means the models are easier to understand, but less efficient to develop large

applications. In Figure 2.3, the navigation structure model of the same CD reviewing application is il-

lustrated. UWE definitely has potential to be a powerful web application modelling language, however

its existing focus is on conventional web applications.

6UWE uses at least eight models [170]: requirements, content, architecture, navigation, process, business logic, ar-

chitecture and integration models; whereas WebML uses at least three models [43, ?]: data, hypertext, and presentation

models.
7Using model transformation technology such as QVT and ATL, as discussed later in Section ??.
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define page editUser (u : User) {

title { "Edit User: " output(u.name) }

section {

header { "Edit User: " output(u.name) }

form {

par { "Name: " input(u.name) }

par { "Password: " input(u.password) }

par { action("Save Changes", saveUser()) }

}

action saveUser() {

u.persist(); return viewUser(u);

}

navigate(home()) { "return to home page" }

}

}

Listing 1: Part of a web application implemented in WebDSL, adapted from Groenewegen et

al. [119]

Wright and Dietrich [323] found that UWE had no support for common web concepts such as

e-mails and browser identification. A significant extension to UWE is therefore necessary to support

basic web concepts, which would then need to be extended again to support RIA concepts; but these

extension would be vastly simplified due to its adherence to model-driven standards. The language’s

openness, automatic developer processes, clean models, and standards-based approach is promising

for future extensibility.

2.4.4 WebDSL

WebDSL is a DSL for implementing data-driven web applications with a rich data model, with

limited support for user interface modelling [119]. It can support a wide range of security models –

including most of the security models discussed later in Section 4.8 – although these policies have to

be individually implemented [120]. No visual model has been developed, so instances are represented

textually, as in Listing 1.

Web applications defined in WebDSL may then be generated into source code through the model

transformation language Stratego/XT. Language extensions also extend the code generator by provid-

ing plugins upon the base language. At the time of writing, WebDSL is still fairly recent and lacks

supports for RIA concepts such as client-side scripts and browser control, making it unsuitable in

modelling RIAs.

2.4.5 Web Information Systems

Rather than providing a visual model, work has been done on describing web applications from a more

formal perspective, with roots in algebra and graph theory. Schewe [263] describes Web Information

Systems (WIS) as a triplet of issues: content, navigation and presentation, with each issue described

using strict notation. Like most existing approaches, WIS lacks modelling support for most web

concepts, and cannot handle the interactivity of RIAs.

The argued benefit for using formal models is that it simplifies formal verification of the model; but

the line between formal and informal models continues to blur, as modelling languages (and instances)
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Feature Category WebML UWE W2000 OOWS OOHDM Araneus

Events Some - Poor - - -

Browser Interaction Poor - - - - -

Lifecycle Management Poor Good Poor - - -

Users Good Poor Poor Poor - -

Security Some Some Poor - - -

Database Support Good Some Poor Poor Poor Poor

Messaging Good Poor Some - - -

UI Modelling Poor Some Some Poor Some Poor

Platform Independence Excellent Excellent Good Excellent Good Some

Standards Support Poor Excellent Excellent Some Poor -

Use of Metamodels Poor Excellent Excellent Poor - -

Verification Some Some - - - Poor

Software Support Good Some Poor Some - Some

Table 2.1: Existing modelling language support for the general feature categories of modelling

Rich Internet Applications, adapted from Wright and Dietrich [323]

Rating Concept Support

- No support at all

Poor Very limited support, difficult to implement

Some Some support, some aspects cannot be implemented

Good Most aspects can be implemented with ease

Excellent Ideal implementation of the concept

Table 2.2: Subjective measurements legend, as used in Table 2.1

are increasingly using formal syntax and semantics in their own definition [168]. By themselves,

formal models are difficult for developers to understand or utilise, so any formal modelling approach

requires tool support in order to make any impact [41].

2.4.6 Older Languages

There is a vast selection of other modelling approaches to web applications, and each of these have

been similarly investigated as to the feature requirements of modelling RIAs. Wright and Dietrich

[323] investigates the languages W2000 [13], OOWS [241], OOHDM [256] and Araneus [201] and

finds that these languages are particularly unsuitable for modelling RIAs. All of these older languages

have been found to lack support for many of the fundamental concepts in web applications [245, 273],

and many are currently out-of-date or poorly maintained. These approaches will therefore not be

considered in any further detail in this thesis.

2.4.7 Evaluation

Wright and Dietrich [323] critically evaluated many of these languages against the general feature

categories of RIAs introduced earlier in Section 2.3.1, with respect to a subjective ranking. The

results of these evaluations are summarised here in Table 2.1, as per the subjective ranking legend of

Table 2.2.
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This review found that the majority of approaches have limited existing support for standard web

application concepts that should be supported already, such as sessions8, events, messaging and se-

curity. These languages are therefore unsuitable as candidates for an extension to support RIAs, as

significant effort must first be expended to address conventional web applications. Existing approaches

do not directly support events or interactive functionality, but instead provide this functionality through

the use of user interface libraries. Fundamental web concepts such as users and security were often

ignored, and very few approaches directly investigated the use of verification techniques.

Along with the existing reviews discussed earlier at the beginning of this section, one can safely

state that no existing modelling language satisfies the requirements for a RIA modelling language as

defined by Wright and Dietrich [323]. In particular, there is an obvious conceptual gap between the

high-level web system concepts and the low-level technologies required to support its implementation.

This gap is highlighted by the arrival of new technologies, which add additional complexity that needs

to be simplified.

2.5 Benchmarking Application

While the basic feature evaluation discussed in the previous section is useful to obtain a brief overview

of a RIA modelling language, a more detailed functionality-based evaluation is necessary in order to

evaluate the expressiveness of these different approaches with greater accuracy. Importantly, these

evaluations may be compared objectively, and will also highlight any specific functionality deficiencies

of a particular approach.

Functional benchmarking applications may be useful in identifying and validating the expressive-

ness of different technologies, and have been used in many computing domains such as business rules

and server-side performance [112, 314]. These applications allow different technologies to implement

an agreed-upon concept, and the final implementation in each technology can be evaluated against

metrics such as size, performance or development cost.

Wright and Dietrich [322] propose a new benchmarking application named Ticket 2.0 as a func-

tional benchmarking application for the evaluation of RIA modelling languages. The 59 detailed func-

tionality requirements introduced earlier in Section 2.3.2 were each included as functionality within

the requirements for a RIA, within the domain of a social networking-enabled, event ticketing appli-

cation. As described in the paper:

“Its business goal is to provide a rich interface for users to browse upcoming events

and book tickets using a credit card. They may interact with other users on the site through

friends lists and chat rooms on the event detail pages themselves, permitting open discus-

sions and user interaction. It also aims to provide a unified interface for event managers,

allowing them to schedule upcoming events and track their progress.” [322]

A conceptual overview of the intended application is provided in Appendix B. For the full de-

scription of the requirements, and a mapping from the defined requirements to the features of the ap-

plication itself, the interested reader is referred to the published paper. Ticket 2.0 may also be used to

compare other forms of RIAs, such as conventional web application frameworks and general-purpose

languages.

8A session is “a sequence of related HTTP requests between a specific user and a server within a specific time window”

[220, pg. 114].
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2.6 Metrics

Measurement is as essential part of software engineering, as discussed by Pressman [247]. Park et

al. [240] argue that software measurement allows the characterisation, evaluation, prediction or im-

provement of the process. This concept of measurement is defined formally by the IEEE through a

metric [143], which is “a quantitative measure of the degree to which a system, component, or process

possesses a given attribute.”

In the software engineering domain, these measurements may therefore be used to get some sense

of whether the requirements are consistent, testable and implemented; whether the design is of high

quality; to understand the complexity of the system; and whether the development activity can be

improved [82, pg. 3–21]. Software metrics, in particular, can be combined in a well-defined way in

order to aid analysis and assessment of a software system through a software quality model [82, pg.

338–344], such as the ISO 9126 model [147].

Individual metrics are defined for a particular domain, and often cannot be evaluated across dif-

ferent domains. For example, web application metrics such as “number of pages” cannot be directly

compared to implementation metrics as “lines of code” or “number of comments”. In this thesis, four

domains of metrics will be discussed: domain-specific metrics for a particular web application (web

application metrics); metrics for the modelling approach used (metamodelling metrics); and metrics

for the development process itself (system metrics).

A number of other domain-specific metrics were considered, but have not been included in this

thesis. For example, Selic [271] introduces the model-driven metrics of compilation time for translat-

ing a model, and the turnaround time for applying incremental changes. Other metrics, such as code

coverage [?] and execution time were also considered, however these metrics are more appropriate for

highlighting deficiencies in a single implementation, and not for evaluating different implementations

of the same system.

2.6.1 Web Application Metrics

Web application metrics are metrics evaluated against a particular implementation of a web applica-

tion, and there is a significant body of existing research into defining and using these metrics. These

metrics are often used to estimate the effort required to develop different applications, but they can

also often be used to compare different web applications for complexity. They cannot be used to com-

pare different implementations of the same design, but are instead used to compare the complexity of

different web application designs.

By reviewing a wide selection of research into web application metrics, Mendes et al. [199] found

that most existing metrics are concerned with estimating the development effort for a given web ap-

plication (cost estimation). As an example, Cowderoy [53] defines size metrics such as number of

web pages; amount of text; number of images; number of features off-the-shelf; and include metrics

dedicated to reuse or outsourcing.

Many metrics have been proposed for object-oriented software systems; for example, the MOOD,

MOOSE, EMOOSE and QMOOD metrics are all different collections of object-oriented software

metrics, as discussed by Baroni and Abreu [15]. Baroni [14] describes a comprehensive collection

of software metrics, including these object-oriented metrics, that can be applied to a system. As a

web application may be implemented using any conceptual methodology – including object-oriented,

procedural and functional – these metrics cannot be consistently applied to web applications.
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Metric [210] [292] Description

TNP Number of packages, i.e. EPackages.

NoC TNC Number of classes, i.e. EClasses.

NoAC Number of abstract classes, i.e. EClasses that are specified as abstract.

NoD Number of primitive datatypes, i.e. EDataTypes.

TNoR Total number of references, i.e. EReferences.

TNoA TNA Total number of attributes, i.e. EAttributes.

NoE Number of enumerations, i.e. EEnums.

Nav Navigability: The proportion of references with a defined eOpposite.

Cont Containment: The proportion of containment references to all references.

Dat Data quantity: The proportion of attributes to overall structural features.

Table 2.3: Selected metamodelling metrics within the Eclipse Modeling Framework, adapted

from Monperrus et al. [210] and Vépa et al. [292]

2.6.2 Metamodelling Metrics

Metamodelling metrics can be useful to compare different metamodelling approaches intending to

model the same domain. These metrics can either be concerned with individual elements of the meta-

model, or the metamodel as a whole. For example, Rossi and Brinkkemper [257] proposed a set of

seventeen non-empirical – i.e., not derived from usability studies – complexity measurements for mod-

elling languages, such as a metric for average complexity (C(MT )), and a metric for total conceptual

complexity (C′(MT )). Siau and Cao [275] applied these metrics to UML [222], and found that UML

is large and complex compared to other object-oriented modelling techniques with respect to these

metrics.

Monperrus et al. [210] investigated applying similar metrics to modelling languages implemented

in the Eclipse Modeling Framework9, and some of these proposed metrics are listed here in Table 2.3.

Vépa et al. [292] also look at a selection of metamodel metrics, in order to measure and compare

different model repositories, and derive their metrics through a series of ATL transformations10 ; these

metrics are also listed here in Table 2.3.

Another metric for evaluating a particular modelling approach, or domain-specific language, would

be through measuring the productivity of the language in terms of function points per staff month; this

was illustrated by Mernik et al. in order to measure programming language productivity [202].

Since in the Model-Driven Architecture11 all metamodels are also models, we could evaluate

metamodels through standard model metrics. For example, the degree of a given class would refer

to the number of attributes and references directly by the class, and distinct types would refer to the

distinct number of metamodel types used (e.g. classes, attributes, references, or enumerations). A

suite of some model metrics have already been proposed by Wright and Dietrich [324] to evaluate the

complexity of EMF model instances.

9The Eclipse Modeling Framework (EMF) is described in further detail later in this thesis, in Section 6.2.1.
10ATL transformations are described in further detail later in this thesis, in Section ??.
11The Model-Driven Architecture (MDA) is described in further detail later in this thesis, in Section 3.1.5.
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Metric Description

Tasks Tasks implemented

Time Development time, in whole weeks

NDev Number of developers [271]

FC Number of file changes

Rev Number of SVN revisions

DTech Number of different programming technologies used [232]

DMedia Number of different media types used [232]

Table 2.4: Overall system metrics, adated from Selic [271] and Olsina et al. [232]

Metric Description

Files Number of files

Size Size of all files, in bytes

NCLOC Physical lines of code [239, 82]

ALOC Average NCLOC per file

Table 2.5: Language system metrics, adapted from Park [239]

2.6.3 System Metrics

There are a limited number of system metrics that can be used to compare two diverse implemen-

tations of the same project, possibly because the development artefacts depend heavily on the staff

and technologies selected for a given implementation. Metrics that are useful within one approach

(for example, “number of plugins” in a Symfony project) may have no reciprocal metrics in another

approach (for example, “number of visual models” in a MDD project).

In this research, it seems that only two common domains exist between different implementations

of a given RIA. Overall system metrics may be used to evaluate the system size and development

effort, as illustrated in Table 2.4; a number of these metrics are derived from existing work by Olsina

et al. [232] and Selic [271]. Similarly, language system metrics may be used to evaluate the physical

representations of the development artefacts, as discussed by Park [239].

With regards to both of these domains of metrics, frameworks allow three different types of de-

velopment effort to be independently evaluated. As discussed earlier in Section 2.2, these approaches

can automatically generate boilerplate code, or encapsulate common functionality in runtime libraries.

Consequently, system metrics should be applied to each of these different versions of a system:

• The manual effort, representing only content that has been developed independently of any

boilerplate code or external libraries;

• The generated application, representing both the custom code and the generated boilerplate

code provided by the framework; and

• The complete application, representing all custom code, generated code, and included libraries.

By splitting up system metrics into these three different versions, the level of complexity hidden

or managed by the framework can be quantified. For example, external libraries can be expected to



26 2 Background

have a large number of files (Files); and the size of the generated application (Size, NCLOC12) should

be significantly greater than the manual effort.

2.7 Development Approaches

There are a number of approaches in which a modelling language may be developed – for example,

through the extension of an existing language, or the development of a new language. In this section,

a range of different development approaches with regards to existing models will be discussed, along

with a brief discussion on some development process models that may be used in such a development.

2.7.1 Modelling Language Approaches

If a modelling language is being developed with respect to an existing modelling language, three meth-

ods in developing a new modelling language are commonly used: restricting the language; extending

the language; or abstracting the language into a new level of abstraction. Each of these approaches

have a resulting impact on the complexity or expressivity of the language, and on the complexity of

modelling a system using the language.

Extension

Extension is the officially-supported extension approach of UML , through the use of stereotypes,

tagged values, and constraints [36]. The development of a framework for a programming language

falls under this category as well, because the existing libraries are essentially being extended, adding

complexity in the implementation. The extension of a common industry-accepted language, such as

UML or Java, improves the acceptance of the new approach because the concepts are already defined

and widely understood in industry [159]. The improved expressibility simplifies development of the

resulting model instances, but the complexity of the language itself increases. Kelly and Pohjonen

[159] also argue that it is difficult to adapt a general-purpose language to a particular domain.

Restriction

Restriction is the approach of removing language elements and concepts that are deemed unnecessary,

thereby reducing the complexity of the language. For example, the removal of all but UML class

diagrams in UML would likely lead to a simpler language similar to ER diagrams. However, a well-

designed language is one that cannot be restricted any further; the restriction of languages necessitates

a reduction in functionality.

Abstraction

The abstraction of a modelled system into a higher-level model is the most popular approach in model-

driven approaches, and the development of a DSL follows this approach [90]. Model instances at the

higher level of abstraction are intended to be later transformed into lower-level model instances of the

abstracted existing language [28]. By abstracting a model, the resulting language can become more

expressive, less complex, and easier to use; however, these gains only occur if the abstracted language

12In this thesis, the NCLOC metric represents the physical lines of code that are not comments, as defined by Fenton and

Pfleeger [82, pg. 247].
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can be translated into the lower-level language. Developers of new abstractions must also be careful

not to create an abstraction that is too generic or too specific [159].

UML Profiles

As discussed earlier in Section 2.4.2, UML’s extensibility is entirely through extension; restriction

is not supported. By defining new stereotypes, tagged values and visual stereotypes, UML Profiles

also permits limited abstraction. However, since UML does not specify translation semantics, the

translation from these abstracted levels into lower-level models must be provided separately. Bruck

and Hussey argue that UML should only be extended if the majority of your concepts easily map onto

existing UML concepts [36].

Despite its popularity in industry, there seems to be no reason why WebML was developed as a

separate DSL, rather than an extension of UML (like UWE). Perhaps it was because UML and WebML

were being developed at roughly the same time; or perhaps the WebML developers thought that web

application concepts could not easily map onto existing UML concepts. Ceri et al. discuss how to

translate WebML models into UML models [43], but this integration appears to be one-way.

Discussion

The actual approach used for a model-driven project should depend on the project’s requirements. If

a system is already fully described in an existing language, then restriction should be used; or if an

existing language almost describes the system, then extension may be the best approach. If the system

does not easily map onto any existing language, then abstraction may be the best approach.

Other than the overall architecture used in the development of a new language, there are also

practical concerns. Kelly and Pohjonen [159] investigate 76 cases of modelling language development,

in which they identify fifteen common problems in the development of modelling languages. For

example, they find that ignoring or avoiding prototyping and language evolution is a common mistake;

evolution is inevitable, especially when the language is intended for real-world usage. The interested

reader is referred to Kelly and Pohjonen [159] for a detailed discussion on these real-world problems.

2.7.2 Software Process Models

To satisfy good software engineering principles as discussed by Pressman [247], software develop-

ment should be performed according to a process model adapted to the individual project. In this

section, two development models will be discussed: the linear sequential model, as the classic soft-

ware development lifecycle [247, pg. 30]; and the evolutionary model, which may be better suited

towards the implementation of modelling languages due to their natural evolutionary properties [159].

Many other process models have been discussed in literature – such as prototyping, rapid application

development (RAD), component-based and formal methods [247] – but a full discussion is outside the

scope of this thesis.

Linear Sequential Model

The linear sequential model is sometimes called the classic life cycle or the waterfall model, and sug-

gests a systematic, sequential approach to software development [247, pg. 28–30]. The classical model

will theoretically resolve into a complete solution, but assumes that all requirements can be captured
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at the beginning of the process, and the final architecture can be completed before any development

begins.

However, it is difficult to capture all of the requirements with such detail at the start of a project;

the model cannot adapt to changing requirements; and a working version cannot be produced until

the very end of the process, delaying any sort of feedback cycle. These disadvantages of the linear

sequential model generally outweigh the benefits for all but the simplest of software projects [247, pg.

30].

Evolutionary Model

The evolutionary model covers an ever-expanding list of different models, such as the agile model,

SCRUM, the spiral model, and others [247, pg. 34–42]. They refer to an approach in which develop-

ers produce increasingly more complex versions of the final system, with each version a deployable

artifact. Evolutionary models encourage the rapid production of working, but incomplete, solutions,

that evolve over time into the final version. An evolutionary approach guarantees that a working copy

of an early solution is always available, allowing for rapid and early feedback. It also ensures that

even if the project exhausts its available resources, it still has at least partially-implemented working

deliverables.

It is important to note that the terms iterative and evolutionary, while similar, have two distinct

meanings; that is, all evolutionary models are iterative, but not all iterative models are evolutionary.

The iterative model refers to a process where a series of smaller sequential tasks are done repeatedly.

For example, the linear sequential model can be executed iteratively, but only on the final iteration can

the software be deployed [247].

Discussion

Evolutionary development is particularly suited to model-driven approaches: Kelly and Pohjonen ar-

gue that modelling language evolution is inevitable, and should be embraced rather than avoided [159];

similarly, Fowler argues that the development of domain-specific languages are well suited towards

evolutionary development [90]. UML has itself been developed in an evolutionary fashion, and at the

time of writing is continuing to evolve [168].

It is important to also consider the impact of a particular software process model in a research

environment such as this thesis. Purely evolutionary approaches are not suitable for research envi-

ronments, as the design and analysis of a research problem is often more valuable than providing an

implementation. However, purely sequential approaches are also not suitable for research environ-

ments, as the validation of a partial implementation is often more valuable than providing a complete

implementation that cannot be validated. Within a research environment, it seems that a balanced

approach between the sequential and evolutionary approaches may be beneficial.

2.7.3 Test Driven Development

Test-driven development (TDD) is not a software process model; rather, it is a development style that

aims to improve the quality of software. As Beck [19] discusses, the goal of TDD is to develop “clean

code that works”: in particular, it is a predictable way to develop, encourages frequent releases and

can support changing requirements. TDD is therefore not very useful for designing metamodels, but
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would rather be a good development style to use to produce the proof-of-concept implementation of

the metamodel, and would mesh well with the evolutionary software process model.

Outside of an implementation of a modelling language, TDD may also be independently used by

the model developer to improve the quality of their developed model instances. Kent [160] argues

that tooling to support model-driven testing is essential to maximise the benefits of model-driven

development. Model-driven verification, as described earlier in Section 2.3.1, may also be introduced

as part of a model-driven testing framework.

2.7.4 Open Source

In the software development world, open source refers to software where the source code is available

and distributed under a particular open source license [206]. Mockus et al. [209] argues that open

source software can be extremely successful and of a high quality, as access to the source code of

a software project can be used to identify bugs and develop third-party extensions. In particular,

open-source projects have been found to reduce defects compared to similar proprietary software

[209]. Development under an open-source license can also improve the functionality of the developed

system, as software projects under compatible licenses can be integrated together.

In this thesis, the open source license will only be briefly mentioned, and a full discussion on

the preferable range and combinations of licenses will not be discussed. There may be legal issues

in a model-driven architecture similar to those in a code compilation scenario. For example, a GPL-

licensed compiler [94] cannot enforce the GPL on the code that it compiles, except in the case that

portions of the compiler – for example, runtime libraries – are also included in the compiled output13.

In particular, the implementation of a model development environment for web applications may

consist of a number of components, and each may be under a separate open source license. A full legal

discussion legal repercussions of combining different open source licenses is well outside the scope

of this thesis, but it is important to keep licensing restrictions in mind.

2.8 Conclusion

This chapter has discussed the new challenges that Rich Internet Applications have imposed on con-

ventional web development processes, and that no existing modelling language for web applications

can support these challenges. The extension of an existing general-purpose programming language in

terms of a framework is not desirable, in order to gain the benefits of a platform-independent abstrac-

tion to RIAs.

Consequently this thesis proposes the development of a new language for modelling Basic RIAs

from scratch, but reusing concepts and semantics from established languages; and one that can be

manipulated using a visual representation. This language will be used to implement the benchmarking

application Ticket 2.0 according to some of the development approaches discussed in this chapter, and

will be evaluated using a selection of metrics, feature comparisons, and evaluating the initial language

requirements.

13The interested reader is referred to the GPL FAQ [96] – “Can I use GPL-covered editors [...] to develop non-free

programs?” – and the GCC Runtime Library Exception [95].





Chapter 3

Modelling

The general area of modelling within software engineering is a rich area of existing research. This

chapter will investigate and briefly summarise many of the techniques, approaches and standards in

the model-driven area. This is necessary to clarify the scope of this research, to understand its in-

teractions and relationships within the larger scope of model-driven approaches, and to improve later

interoperability with other modelling languages.

3.1 Modelling

A model of a system can represent almost anything, and be represented by almost anything; for exam-

ple, source code can be considered a model, yet the grammar of the source code can also be considered

a model. The most consistent and agreed-upon definition is that a model is a simplified abstraction

of reality [127]. Models may coexist in different modelling spaces and themselves be abstractions, or

instances, of other models [69].

However, the idea that a model is an abstraction of reality does not necessarily mean that a given

model is useful. Selic [271] argues that for a model to be useful and effective, it must sufficiently

possess the following five key characteristics:

1. Abstraction: “A model is always a reduced representation of the system that it represents.” If

the model is actually more detailed than the original concept, then it is not a model.

2. Understandability: “It isn’t sufficient just to abstract away detail.” A model must still contain

concepts that are understandable.

3. Accuracy: “A model must be a true-to-life representation of the modeled system’s features of

interest.”

4. Predictiveness: “You should be able to use a model to correctly predict the modelled system’s

interesting but non-obvious properties, either through experimentation or some type of formal

analysis.”

5. Inexpensive: “It must be significantly cheaper to construct and analyze [a model] than the

modelled system.”

Discussions on the suitability of model-driven approaches are found widely in existing literature,

with good overviews provided by Meservy and Fenstermacher [203] and Djurić et al. [69]. Gitzel et al.
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[110] discusses the use of MDA and it’s natural advantages to address the unique problems introduced

by web applications, such as improving usability and future maintenance.

Within the world of modelling, there are many different techniques and standards, and the rela-

tionships between them are often misunderstood or ill-defined. This section will describe each of these

approaches and their relationships to other model-driven approaches.

3.1.1 Metamodels

If a model is a simplified abstraction of reality, a model developer still needs to define what the abstrac-

tion means, and how the reality may be mapped to a model. This represents the modelling language

for a collection of models, and this language describes the syntax and semantics of the abstracted

model instances1. These model instances are said to be valid if their representation conforms to the

syntax, and their meaning conforms to the semantics defined in the modelling language. The syn-

tax of a modelling language is often represented formally using grammars such as EBNF, while the

semantics of a modelling language is usually represented informally using plain text [132].

The most widely-known modelling language used in software engineering is the Unified Model-

ing Language (UML) [227], as described earlier in Section 2.4.2. This general-purpose modelling

language aims to support the analysis, design and implementation of systems and processes, although

it is mainly used in software engineering. For this language, both its syntax and semantics are defined

using a mixture of formal constraints, visual rules and structured English language.

A modelling language is also known as a metamodel, and the two terms may be used interchange-

ably [69]. In this thesis, the term model instance is preferred over the term model to reduce confusion;

likewise, the term metamodel is preferred over modelling language, to distinguish the approach from

a domain-specific language, as discussed in the following section.

3.1.2 Domain-Specific Languages

A domain-specific language (DSL) takes the abstraction concept of modelling and represents it in

terms of a human-editable language. Fowler defines a domain-specific language as “a computer pro-

gramming language of limited expressiveness focused on a particular domain” [90, pg. 27], and this

definition is used in this thesis. He argues that the boundaries between a DSL and a general-purpose

language are blurred, but certain elements of a language may be used to categorise the language.

Fowler puts a heavy emphasis on the limited expressiveness of a language as an indicator of a

DSL. For example, he argues that the powerful statistical language R [?] has enough general-purpose

functionality to be categorised as a general-purpose language, and not a DSL. In particular, a domain-

specific language should not exhibit Turing completeness. Similarly, Fowler argues that a DSL should

be designed to be human-editable; for example, if the language is serialised using XML, and is in-

tended to be edited in this representation, then the language cannot be considered domain-specific.

The Benefits and Drawbacks of Domain-Specific Languages

Fowler [90, pg. 33–39] discusses some of the potential benefits and drawbacks of using a domain-

specific language, in order to help inform the design choices of a system architect. Many of these

1One logic-based definition of the relationships between modelling languages and model instances is discussed later in

Section 3.1.10.
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mirror those achieved when using models as abstractions, as discussed in the previous section; the

differences in these benefits will be briefly discussed here.

1. Improving development productivity: As discussed earlier, abstractions can simplify the de-

velopment of complex software applications. A DSL provides an expressive way to manipulate

instances of these abstractions, reducing defects and improving productivity.

2. Communication with domain experts: The abstraction of a DSL allows domain experts to

interact directly with a tailored abstraction for their domain.

3. Change in execution context: As discussed later in Section 3.1.7, general-purpose languages

often can only be evaluated once the instances have been compiled into a lower-level platform.

DSLs on the other hand can permit evaluation either at compile time or at runtime, allowing a

shift in the execution context of a particular approach.

4. Alternative computational model: A domain-specific language may allow a developer to use

alternative paradigm models. For example, DSLs can be used to introduce functional or object-

oriented code into a procedural language.

There are also a number of drawbacks that need to be considered when using a domain-specific

language.

1. Language cacophony: This is the concern that “languages are hard to learn, so using many

languages will be much more complicated than using a single one” [90, pg. 37]. This viewpoint

is particularly noteworthy in the field of RIA development as discussed earlier in Section 2.1.1,

where a RIA must be implemented across many different languages resulting in the conceptual

gap of development.

2. Cost of building: The effort necessary to design, implement, test and maintain a DSL cannot be

ignored, and not every abstraction will improve productivity to the degree necessary to justify

the investment.

3. Ghetto language: Similarly to feature creep as discussed by McConnell [197, pg. 319–344], an

incrementally-developed DSL may gradually gain features and functionality until it reaches a

point of general-purposeness, at which point the development investment necessary to maintain

the system outweighs the value of the DSL. Fowler argues that the only defense to feature creep

is to firmly define the scope of the DSL.

4. Blinkered abstraction: A danger when using a certain abstraction is that of trying to implement

concepts outside of the original abstraction scope, and not permitting changes to the original

abstraction. This manifests itself when the time spent trying to implement a certain piece of

functionality exceeds the effort that would have been necessary to adapt the abstraction to absorb

the new behaviour.

Metamodels and Domain-Specific Languages

Modelling languages and domain-specific languages are two similar concepts; however, the former

represents a method of defining an instance of an abstraction, and the latter represents a restriction
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on the types of abstractions used. The terms are not mutually exclusive, and can be used simultane-

ously; adapting the definition of a DSL provided by Fowler [90, pg. 27], a domain-specific modelling

language therefore represents a modelling language of limited expressiveness focused on a particular

domain. As discussed earlier, this distinction is made clearer by only referring to modelling languages

as metamodels.

3.1.3 Model-Driven Development

Model-Driven Development (MDD) does not refer to a defined approach, but rather the idea that

models should be embraced as part of systems development. Selic [271] asserts that the key of model-

driven development is not the use of particular technologies or standards, but rather the essentials of

model automation (including model transformation and model verification), and modelling standards;

using these essentials, a model-driven process can be tailored for a specific system development.

System development can benefit from model-driven development in a number of ways, as the

models can be used in a number of potential applications as summarised by Czarnecki and Helsen

[57]:

• Generating lower-level models, and eventually code, from higher-level models;

• Mapping and synchronising among models at the same level, or different levels, of abstraction;

• Creating query-based views of a system;

• Model evolution tasks such as model refactoring; and

• Reverse engineering of higher-level models from lower-level models or code.

Model-driven development also encourages a system to integrate into the ecosystem of existing

models, to increase interoperability and model reuse. Finally, another important application of model-

driven development is the ability to verify models against consistency and correctness properties; this

has become increasingly important in integrating models with the semantic web and related reasoning

applications [271, pg. 21]2.

3.1.4 Model-Driven Engineering

Model-Driven Engineering (MDE) is closely related to MDD, and some authors consider the terms

equivalent to the point of interchangeability; for example, Koch [170] and Koch [169] appear to use

the terms MDE and MDD interchangeably in their definitions of UWE. In this thesis, the distinction

between the two terms will be taken from the definition by Schmidt [266]: MDE follows the same

concepts as MDD, but proposes using specific technical approaches for the applications of MDD,

whereas MDD is technology-agnostic.

These technical approaches are still platform-independent however, and are not dependent on any

particular implementations of each technology. For example, MDE advocates using DSLs as opposed

to general-purpose modelling languages, but these DSLs can be implemented in any model-driven

environment. Consequently, while all MDE approaches are also MDD approaches, not all MDD

approaches are MDE; it is perfectly acceptable to use general-purpose languages in a MDD approach,

or to ignore model transformations completely.

2The specific details of verifying and validating model instances against certain properties is discussed in further detail

in Chapter ??.
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Figure 3.1: The Metamodelling Architecture of MDA, as discussed by Djurić et al. [69]

3.1.5 Model-Driven Architecture

Model-Driven Architecture (MDA) is an ongoing software engineering effort to standardise model-

driven approaches, and is advocated and trademarked by the OMG [217]. MDA focuses on developing

architectural standards for the development and interchange of modelling approaches; it is both an

MDE initiative, and an MDD approach. At the time of writing, only a draft outline3 of the proposed

architectures has been published [217]. In particular, MDA is currently based on two conceptual

architectures: a four-layer metamodelling architecture, and a four-layer viewpoint architecture. These

architectures are not mutually distinct, but considering both of these architectures simultaneously is

useful.

Metamodelling Architecture

The first architecture behind MDA is based on a four-layer metamodelling architecture [217], as illus-

trated in Figure 3.1; each layer has a practical purpose, as described by Djurić et al. [69]. Each layer

provides a metamodel for the layer below with an increased layer of abstraction, and the OMG has

supplied a relevant modelling standard for each layer. This metamodelling architecture is used for all

OMG modelling standards [165].

1. The Reality layer (M0) represents the real-world objects that are being modelled, which can in-

clude everything, including non-tangible things such as modelling languages and other abstract

concepts. For example, real-world entities such as rocks or trees can be part of M0, as could a

running Java application, or its source code.

2. The Model layer (M1) represents the model of the real-world object; these models are called

analysis models in UML [168]. Individual models are known as model instances. For example,

3The technique of publishing a number of drafts before standardisation of a language was also used during the develop-

ment of UML [168] and the HTML standards [294, 303].
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Metamodel Meta-metamodel

Java EBNF [115]

SGML ISO 8879 [145]

HTML 4.01 DTD [294]

HTML 5 English Language [303]

XML EBNF [302]

DTD EBNF [302]

Ecore Ecore [279]

EBNF EBNF [146]

MOF MOF [224]

UML MOF [226, 165]

English Language English Language

Table 3.1: List of Popular Metamodels and their Meta-metamodels

a Java application in M0 can be modelled with its Java source code in M1.

3. The Metamodel layer (M2) represents the model of the models in M1, also known as metamod-

els or modelling languages. For example, all Java source code in M1 must adhere to the Java

language specification [115], which would be defined in M2. One OMG standard for metamod-

els is the Unified Modeling Language (UML) [227].

4. Finally, the Meta-metamodel layer (M3) represents the model of the metamodels in M2. For

example, the definition of the Java language is provided in terms of Extended Backus-Naur

Form EBNF [115]. EBNF would therefore be defined in M3. Most importantly, all M3 meta-

metamodels are instances of themselves; that is, EBNF is defined formally as an instance of

its own syntax [146], and there is no such thing as a meta-meta-metamodel. As a standard for

meta-metamodelling, the OMG proposes the Meta-Object Facility (MOF) [229].

Importantly, this architecture satisfies the problem on where increasing levels of metamodelling

abstraction will end. Since models can themselves be defined in terms of metamodels, it is a realistic

question to ask whether this redefinition could continue forever. By defining M3 models as defined by

themselves, the layers can be restricted to four: “The OMG defined that all elements of layer M3 must

be defined as instances of concepts of the M3 layer itself” [165, pg. 88].

For comparison, a selection of common metamodels and their associated meta-metamodels are

listed in Table 3.1. A full description of each of these models will not be provided here. If the

meta-metamodel for a given metamodel is identical to the metamodel, then this meta-metamodel is

M3-compliant according to the MDA, and can be used in the development of an MDA-compliant

modelling approach. There are two particularly interesting aspects of this list: firstly, HTML 4.01 is

defined in terms of DTD, which itself is not M3-compliant; and secondly, at the time of writing HTML

5 had only been defined using the English language [303].

A model instance is not limited to conforming to a single metamodel, and multiple metamodels are

usually combined in a logically conjunctive way. For example, HTML 5 is currently defined only in

terms of the English language, but in the future may also be defined using XML Schema or DTD [303],

with each metamodel further restricting the valid range of HTML 5 instances to improve precision.

Similarly, the Web Ontology Language (OWL) [308] is defined in three metamodels: EBNF abstract
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Figure 3.2: The Viewpoint Architecture of MDA, adapted from Mukerji and Miller [217]

syntax, direct model-theoretic semantics and model mappings [297].

Viewpoint Architecture

A second architecture proposed by the MDA is the four-layer viewpoint architecture [217, 165], il-

lustrated in Figure 3.24. In this architecture, each layer tries to be an independent abstraction of the

layer below it, with the intention of simplifying the development of complex model-driven approaches

across an entire business, rather than just a software product. Kleppe et al. [165] discuss the imple-

mentation of this architecture with a real-world example.

The OMG does not define any standards for any layer, as each layer is instead advocating a partic-

ular architecture, although many of these layers could be implemented using existing OMG standards.

For example, both a PIM and a PSM can be represented using UML [165].

1. The Computation Independent Model (CIM) is a software-independent model or business model

used to describe a business system.

2. The Platform-Independent Model (PIM) is the model of a software system that is independent

of any implementation technology, and these models have a very high level of abstraction5 . It

is not possible to automatically translate a CIM into a PIM, because the decision of which parts

of the business will be supported by software must be made by a human [165].

3. The Platform Specific Model (PSM) is the specification of a software system using a particular

implementation technology. In some cases, PSMs can be produced from the automatic transla-

tion of PIMs [165]. Importantly, PSMs are only understandable by people who are experienced

in the specific technology.

4TODO: Get out Kleppe et al. [165] again and see if they also provide this same architecture; if so, place an additional

reference in the caption of the figure.
5TODO: Jens feedback: Mention how the PIM is similar to virtual machines. But, virtual machines have nothing to do

with modelling, and unless I can find a reference saying that the viewpoint architecture was inspired by virtual machines, I

probably can’t mention this in the thesis. Consider reading this in Kleppe et al. [165].
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Figure 3.3: The layers of UML under the MDA, adapted from Djurić et al. [69]

4. Finally, the Code layer is the actual implementation of the PSMs. The transformation from PSM

to code is relatively straightforward.

Kleppe et al. [165] argue that there are four main benefits from using this MDA architecture.

Firstly, by shifting developer focus from platform-specific models to platform-independent models, the

abstraction improves the efficiency of development. Secondly, everything specified at the PIM level

is completely portable, depending on the automated transformation tools that are available; this also

increases the interoperability of models. Finally, Kleppe et al. argue that since the PIM is at a higher

level of abstraction than the PSM, the PIM also fulfills the function of high-level documentation.

Meta Object Facility

The Meta Object Facility (MOF) is an OMG standard that was designed and published as the standard

M3 language for all OMG models, and is used to define modelling languages [165]. As a standard

at the level of M3, the MOF is defined in terms of MOF, and the overall design was heavily derived

from UML. The integration of the MOF with other OMG standards like UML is illustrated in Fig-

ure 3.3. The ambition of MOF – codified as the design goals of the standard – was to simplify the

interoperability and communication between different modelling languages, and to clear up some of

the definitions used in UML; the full list of design goals is published as part of the MOF specification

[229].

The MOF model is also known as the Complete MOF (CMOF) package, which is built upon

a subset of the UML 2.0 Infrastructure [226]. MOF also defines a smaller Essential MOF (EMOF)

package, which simplifies the complexity needed for compliance6 by providing a model focused solely

on kernel metamodelling [229]. The Ecore metamodel of the Eclipse Modeling Framework, which

also resides at the M3 layer, was built upon EMOF [?] and model instances can be serialised directly

to EMOF [279, pg. 40]. A full discussion on EMF is provided later in Section 6.2.1.

6An implementation of MOF must adhere to at least one of the two compilance points of CMOF or EMOF.
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XMI

In order to share models, the XML Metadata Interchange (XMI) standard [223] was proposed by the

OMG, which is an XML-based standard for sharing metadata. This standard integrated XML, UML

and MOF together into one standard, which is now an international ISO/IEC standard [148]. Many

model-driven CASE tools, especially those used in UML modelling such as ArgoUML [254] and

Eclipse UML [36], support exporting and important model instances formatted according to XMI, and

a sample XMI model is illustrated in Section J.2. In the same way that XML has improved integration

between different technologies, XMI can be used to improve integrations between different model-

driven technologies, and is an important technology within MOF.

The Big Picture

As the viewpoint and metamodelling architectures in the MDA are not distinct, it can be useful to

consider a model-driven approach that uses both of these architectures at the same time, when try-

ing to define the scope of different interacting models. Figure 3.4 illustrates a range of model-driven

technologies that may be used to implement a RIA, and highlights their interaction with the two archi-

tectures of the MDA. For example, a RIA may be described in a platform-independent manner, which

may then be translated into platform-specific EJB [152] and RIA user interface model instances. These

may, in turn, be translated into instances of HTML [303], SQL [166] and other related technologies.

By considering both of these architectures simultaneously, it is easier to understand the interaction

between each of these MDA architectures. In the domain of RIA development, it is simple to see

how a single model described by a single metamodel (in the PIM) can be implemented using many

different RIA technologies, and how every metamodel has an independent meta-metamodel. This

figure also illustrates how the PIM model and metamodel should not have any reference to the specific

technologies in the PSM or code, highlighting the platform-independence of this layer.

In this example matrix, it is unclear what the PIM M0 for modelling RIAs would represent (marked

as ’??’ in Figure 3.4), and this remains an unanswered question. Would this represent the real-world

mental model of our intentions? Would it represent the analysis or design of the modelling language

in this thesis? Both of these appear to be valid answers, as the M0 layer can represent any concept.

3.1.6 Model Spaces

As discussed earlier, if you take something from the real world (M0) and then model it, you obtain a

model instance on M1. However, this model instance can itself be considered a real world object on

M0, and the model instance can be modelled (or abstracted away) again; that is, models can exist on

different layers at the same time. In order to further understand model-driven development approaches,

a method is necessary to understand how models can exist in multiple domains concurrently.

Djurić et al. [69] propose the concept of a modelling space, which is a particular modelling archi-

tecture within a particular domain. A modelling space consists of all four layers from the MDA, with

the models defined within this space representing the real world from one point of view. Conversely,

each layer of the MDA and its contents are also part of M0, so it is always possible to abstract away

anything into a separate model space.

For example, consider a developer that is trying to use UML to model a Java program, as in

Figure 3.5. UML can model both the Java program and the Java grammar itself [69], and without

modelling spaces it can be unclear where this distinction lies. If we place UML models into a MOF
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Figure 3.4: Using both architectures of the MDA to describe the model-driven development of

RIAs

modelling space, we can introduce a separate EBNF modelling space which holds models for the Java

aspect of the system. This full process is described in detail by Djurić et al. [69].

These separate modelling spaces for Java software and the MOF metamodelling approaches can

make it much clearer to understand where modelling concepts should reside. For example, the syntax

of Java reflection would be modelled in the UML Java grammar model; but the source code of Java

reflection actually being used would be modelled in the UML Java program model.

3.1.7 Model Transformations

As discussed by Czarnecki and Helsen [57], one of the important applications of model-driven devel-

opment is in the generation of lower-level models, and eventually code, from one or more higher-level

models. This process can be generalised as a model transformation, which encompasses all aspects

of transforming one model instance into another; a formal description of a model transformation is

discussed later in Section 3.1.10. This is particularly important within MDA, where many models

within many layers of abstraction need to interact with each other [135]. For external domain-specific

languages, this transformation step is essential if the language is to be used [90, pg. 46].

Model transformations can be implemented with many technologies and approaches, and a de-

tailed evaluation of four existing technologies is provided later in Section 6.4. For example, if the
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Figure 3.5: Dealing with different Modelling Spaces, adapted from Djurić et al. [69]

source models are represented using XML, then Extensible Stylesheet Language Transformations

(XSLT) [301] can be used to express simple translation rules. For MDA-oriented approaches in partic-

ular, the QVT and ATL languages are two proposed standards for representing model transformations

in a platform-independent way, using both declarative and imperative definitions [154].

It is possible to describe the architecture of model transformations using the metamodelling ar-

chitecture of the MDA, where different model instances and metamodels span the M1, M2 and M3

metamodelling layers. Bézivin [28] proposes one common transformation pattern, which is illustrated

here in Figure 3.6. The implementation of UWE uses this pattern heavily, as UWE model instances

need to be transformed repeatedly in order to produce deployable artefacts [169].

Code Generation

Code generation and compilation are two types of model transformation, and are especially common

if programming languages are also considered as modelling languages. Both of these transformations

take platform-independent models at a higher level of abstraction, and refine it into platform-specific

models at a lower level of abstraction as source code. In particular, model transformation may be

considered code generation if the target metamodel is on the Code layer of the MDA viewpoint archi-

tecture, or the model transformation can be considered a model-to-text transformation as discussed in
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Figure 3.6: The Model Transformation Pattern in MDA, adapted from Bézivin [28]

the next section.

It is unclear whether there is a difference between these two terms, and there is no consensus

between the two terms in the research community [57]. In this research, the following distinction is

made: while both techniques generate executable instructions, a code generator generates models (or

source code) that are expected to be edited by a developer, whereas a compiler generates models (or

source code) that are not expected to be edited manually.

3.1.8 QVT

As part of the development of the MOF architecture, the OMG appreciated the need for a standard

model-to-model transformation language. Consequently the OMG developed the Query/Views/Transformations

(QVT) language to satisfy this need [231]. QVT consists of three separate languages:

1. A high-level declarative language, QVT Relations. Instances of this language are generally

represented using a graphical notation [170, pg. 107].

2. A low-level declarative language, QVT Core. QVT Relations transformations may themselves

be translated into equivalent programs within QVT Core [154], and are generally represented

textually.

3. An imperative language, QVT Operational Mappings or QVTo. Instances of this language are

also generally represented textually.

Each of these languages have a different scope and area of intended use. For example, QVTr is

designed for providing high-level model transformations, whereas QVTo is designed for implement-

ing the code generation of higher-level models into lower-level and platform-independent models.

Since this research was started, the OMG published the MOF Model to Text Transformation Language

(MOFM2T) to address model-to-text transformations [228].

The QVT standard relies heavily upon MOF, and all three QVT languages are defined according to

a MOF-compilant metamodel. QVT only supports model-to-model transformations between models

that adhere to the MOF specification [231]. Unless a textual target language is first represented using
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Figure 3.7: Using change models for round-trip engineering, adapted from Hettel et al. [135]

an intermediary modelling language, QVT-based approaches are not suitable for direct code gener-

ation. For example, the JavaML project [9] provides a metamodel for Java programs, similar to an

abstract syntax tree, which can easily be utilised in model-to-model transformations [29].

The Atlas Transformation Language (ATL) [29] was one of the first implementations of the OMG’s

proposal for QVT, and also provides an Eclipse-based implementation [153]. Jouault and Kurtev

investigate and discuss the architectural alignment of ATL and QVT [154], and find that “it is possible

to have a reasonable interoperability between [the two languages]” [154, pg. 1194]. In particular, QVT

Core and QVTo are very closely aligned to the design of ATL.

Round-Trip Engineering

When using a model transformation that follows code generation concepts, it is often desirable to

modify the translated model manually. These target models may be altered or extended, due to main-

tenance or changing requirements. However, the modified target model may no longer be an accurate

result of the original source model transformation. Round-trip engineering (RTE) is the process used

to ensure that the source model remains consistent when the target model is modified [135].

Hettel et al. [135] provide an excellent overview into the challenges in round-trip engineering, and

also discuss some of the approaches used to solve this problem. One of these approaches, common in

the model-driven development community, is on the use of change models, as illustrated in Figure 3.7.

In change models, a change ∆T to the target model T is translated into a change ∆S for the source

model S.

Round-trip engineering is very similar to reverse engineering, however, RTE is more concerned

with keeping source and target models consistent by supporting both forward and reverse engineering.

Chikofsky and Cross II define reverse engineering as a process of extracting abstractions from target

systems, and these abstractions do not necessarily need to be identical to the abstractions of the original

source models [47].

In general, the reverse engineering of model transformations within the same metamodels is very

difficult. As Hettel et al. [135] discuss, this can only be achieved if the model transformation can be

defined entirely using injective functions, each with an injective inverse function defined. However,

even primitive arithmetic functions such as addition are not injective due to information loss7, making

7For example, 2+2 may be transformed to 4, but it is impossible to reverse engineer 4 back into 2+2 without providing

additional knowledge or making assumptions.
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reverse engineering of arbitrary model transformations very difficult [135, pg. 33].

Traceability

When translating requirements into the analysis, design or implementation from a set of requirements,

it is often desirable for the relationships between these source and target artifacts to persist and be doc-

umented explicitly. This is known as tracability, and is often desirable for model-driven approaches

to improve understanding and maintainability [128, 165].

Traceability is particularly important when a PIM to PSM translation is not complete, and the

user must fill in gaps in the PSM. If there is the possibility that the user may overwrite parts of the

automatically translated code, and the environment cannot update the source model, then the user

should at least be warned about any potential problems [165]. This is also closely related to round-trip

engineering, where changes in the PSM need to be synchronised with the original PIM. Traceability

is not a concern with frameworks, as frameworks are extensions of a source model within the same

modelling layer as discussed earlier in Section 2.2.

Some Agile development proponents advocate skipping some or all traceability in favour of “trav-

elling light” to reduce development overhead, as discussed by Hailpern and Tarr [128]. This approach

is likely to be more successful if most of the translation is automated, and if model developers are

supported by rich model-driven tools to deal with changing requirements. However, such an approach

makes reverse engineering much more difficult, and this needs to be considered when following such

an approach.

3.1.9 The Syntax and Semantics of Metamodels

While a metamodel is still being developed, it is acceptable for the meaning of the elements and

structure within the metamodel to be contained within informal design specifications, use cases and

test cases – or even within the metamodel designers’ head8. As the language matures and is pub-

lished however, this knowledge should be expressed formally, and possibly into a format that aids the

computation and evaluation of the metamodel.

This specification process is also known as providing semantics to the modelling language, and

there are many different ways in which this may be achieved. Harel and Rumpe [132] provide an

excellent overview into the different types of semantics that a modelling language may be defined

with. In particular, the syntax of a language represents its notation, and the semantics represents its

meaning. In this section, four related concepts will be briefly discussed.

Syntax

In terms of modelling languages, the syntax or structure of the language defines how a valid model

instance of that language may be constructed, and is often provided in terms of a formal language.

For example, XML Schema [298] may be used to restrict instances of XML to a particular structure;

similarly, EBNF is used to define the valid grammar of Java source code [115]. Syntax may be

defined informally (such as in the English language), but this approach is often undesirable as informal

definitions can introduce ambiguity or hinder machine evaluation. Syntax can also only provide a

limited amount of meaning to a model instance; for example, a containment relationship [279] can

imply some sort of ownership or parent-child relationship.

8TODO: I think I may have taken this quote from somewhere else – but now I can’t find the reference.
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context Classifier::allParents() : Set(Classifier) body:

allParents = self.parents()->union(

self.parents()->collect(p | p.allParents())

context Classifier inv:

not self.allParents()->includes(self)

Listing 2: Implementation of the acyclical class inheritance constraint of UML class diagrams

in OCL [227, pg. 53–54]

Invariants

Invariants are a way to provide additional restrictions in a metamodel in situations where the restriction

cannot be defined in the syntax of the metamodel. For example, the “acyclical class inheritance”

restriction on UML class diagrams cannot be expressed in terms of MOF, but can be expressed as an

invariant using the syntax of the OCL language [225], as illustrated in Listing 2.

Formal Semantics

Formal semantics refer to the meaning that is provided through instances of a formally-defined lan-

guage; that is, one that “has been endowed with precise and unambiguous definitions” [132], and are

unambiguous enough that their assertions may be conclusively proven. A wide range of approaches

provide frameworks for such formal semantic definitions, such as the operational frameworks of struc-

tural operational semantics [242], Hoare logic [137] and abstract state machines [126]. A full discus-

sion on the functionality of each of these frameworks is well outside the scope of this thesis, however

the interested reader is referred to a brief overview by Zhang and Xu [327].

Informal Semantics

Informal semantics attempt to try and provide the same meaning to a modelling language as formal

semantics, but within a language that permits ambiguity. Evolving modelling languages will often

have their semantics initially defined informally – such as the definition of HTML 5 using the English

language [303] – but informally-defined semantics cannot be proven without translation into some

formal representation.

3.1.10 A Formal Definition of Metamodels

In order to precisely understand the relationships between models, metamodels and model transfor-

mations, it is necessary to define the semantics of these terms and their relationships formally. In this

thesis, the definition published earlier by Wright and Dietrich [324] will be used as a basis for dis-

cussing the formal semantics of metamodels, and this section will briefly summarise these definitions.

In terms of the metamodelling architecture of the MDA, the meta-metamodel (M3) of these definitions

is first-order logic [86].

One can consider a model to consist of a set of artefacts M which occur within the universe of all

possible artefacts, i.e. model ∈ 2M . The types of artefacts in this model are not restricted, but in order

for a model to have any meaning, a particular model needs to be restricted against certain semantics
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in the modelled domain. To achieve this restriction, the metamodel S is defined as the valid range of

all possible models, S ⊆ 2M, and this metamodel represents a modelling language.

For example, consider a model universe 2M which contains all possible UML classes and UML

class inheritance relationships; any instance of a UML class diagram model would then be a member

of this model universe model ∈ 2M . Since the UML specification defines a number of restrictions –

for example, class inheritance must be acyclical [227, pg. 69] – this universe needs to be restricted

according to all of these restrictions in the UML metamodel SUML. Any set of artefacts within the

model universe 2M that is also within the metamodel SUML would therefore be a valid UML model

instance and UML class diagram instance.

This restriction can be defined using any number of mechanisms or technologies, including En-

glish language. Most metamodelling technologies, such as UML and EMF (as discussed later in

Section 6.2), support the restriction of model instances using a variety of structural techniques, such

as cardinality constraints and containment references. Restrictions that cannot be defined within the

metamodelling environment may be defined using specialised constraint languages such as OCL [227].

A full suite of possible restrictions is discussed later in Chapter ??.

A Formal Definition of Model Transformations

As discussed earlier in Section 3.1.7 by Czarnecki and Helsen [57], a model transformation is the

process of converting one or more source model instances into one or more target model instances;

however, in this thesis, the formal definition of a model transformation will be restricted to only those

transformations that process one source model instance into one target model instance.

With respect to two meta-models S1,S2, a model transformation can be portrayed as a function

T : S1 → S2. If the target meta-model is also the source meta-model, then the transformation can be

simplified as a single-model transformation T1 : S → S .

3.1.11 The Bigger Picture of Modelling Approaches

The modelling community has not yet arrived at a consensus on how to consolidate and compare these

different modelling approaches. While all of these approaches advocate the use of models in one

way or another, and many can be used simultaneously without conflict, many do not describe their

relationships with other modelling approaches.

In this thesis, these missing relationships are resolved through the definitions proposed in Ta-

ble 3.2, and is necessary in order to understand the bigger picture of modelling approaches. Many

of these relationships are straightforward, and have been discussed in greater detail throughout this

chapter.

The distinction between a modelling language (that is, a metamodel) and a programming language

is hard to define, and needs to be discussed here. They are both abstractions of a system with well-

defined syntax and semantics, and usually both have an implementation in a target language. The

representation of language instances also does not affect the distinction, as modelling languages may

be textual, and programming languages may be visual.

The main distinction between a metamodel and a programming language appears to be the dif-

ference in their scope. A programming language is often a general-purpose metamodel on the PSM

layer of the MDA viewpoint architecture, used to define model instances of the Code layer; whereas a

metamodel is often a domain-specific metamodel on the PIM layer.
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Term Definition

Model A set of artefacts representing a simplified abstraction of reality, that

are valid to the constraints of a modelling language.

Metamodel Defines a valid type of model according to a set of defined syntax and

semantics.

Programming Language A general-purpose modelling language with a specific syntax, seman-

tics, and compilation into a lower-level language.

Framework The extension and abstraction of a programming language, contained

within the same language, to simplify common tasks.

Domain-Specific Language

(DSL)

A domain-specific modelling language with a specific syntax, seman-

tics, and transformations into a lower-level language.

Model Transformations The translation of one model instance into another model instance,

within the same, or across different, metamodels.

Code Generation A model transformation with a target metamodel on the Code level of

the MDA viewpoint architecture.

Model-Driven Development

(MDD)

A development approach that considers models as first-class develop-

ment citizens.

Model-Driven Engineering

(MDE)

A development approach that encourages domain-specific languages

and automated model transformations.

Model-Driven Architecture

(MDA)

Two four-layer architectures illustrating the relationships between dif-

ferent models in an integrated model-driven environment.

Table 3.2: The relationships between different modelling approaches

However, domain-specific programming languages such as IA-64 assembly language [139], and

general-purpose modelling languages such as UML [227], blur these distinctions. Clements [49]

argues that there is a definite overlap between programming languages and modelling languages. In

this thesis, a language is defined as a programming language if its intent is to be general-purpose, and

as a metamodel otherwise.

3.1.12 Metamodelling Environments

As discussed earlier in Section 2.3.1, a modelling environment should be supported with software

tools in order to maximise the benefits of using models [160]. Such tools can include tools to define

model instances, code generators, and analysis tools [266].

While the abstraction of complex systems has always been a part of software development, it is

only recently with the development of new modelling software platforms that general-purpose model-

driven software has become common. New model-driven technologies such as the Eclipse Modeling

Framework [279] and the Graphical Modeling Framework [121] can provide a platform which encour-

ages the cheap and quick development of model-driven approaches. A comprehensive evaluation of

some existing frameworks is provided later in Section 6.2.

3.2 Model Completion

When designing a modelling language, a key challenge is balancing the level of detail in its design

[324]. A language that is too simple will result in a rigid approach that cannot adapt to many situa-

tions; conversely, too much flexibility will force the developer to create and maintain large monolithic
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models.

TODO Jens feedback: Discuss OWL. (Motivation of OWL: Semantically ... to reason about

constraints, to make new assertions.)

Software frameworks, discussed earlier in Section 2.2, have to deal with this problem as well; the

frameworks must be flexible, but also simple to develop with. Web application frameworks such as

Ruby on Rails [284] and Symfony for PHP [243] have proposed to resolve this balance through the

use of documented conventions.

Model completion, as proposed by Wright and Dietrich [324], adapt the concepts behind software

frameworks to the model-driven domain in order to provide this flexibility and simplicity to the model-

driven development of systems. The remainder of this section will briefly discuss the semantics behind

this process, which are necessary to ensure the consistency of the approach; for more detail, the

interested reader is referred to the paper [324].

3.2.1 Documented Conventions

Within these frameworks, documented conventions are an approach to automatically complete missing

parts of the application. The intent behind this process is to improve the productivity and efficiency of

using the framework in common situations. For example, as web applications often require database

integration, the Symfony web application framework supports the definition of an abstract database

schema, which is then translated automatically into code for a particular database platform.

Three important aspects must be considered when using this completion process. Firstly, the

conventions must be well-documented, so that the developer can anticipate changes without having

to inspect source code. Secondly, the intent of the developer must always override the intent of the

framework, and these intentions must never be overwritten; the developer must always be able to

override these conventions, otherwise these conventions would become restrictions. Finally, if the

framework has too many “magic” conventions, then it is likely that the complexity of the framework

will become a mental burden for the developer.

3.2.2 Model Completion Concepts

Model completion is a single model transformation operating on a base model defined by a single

metamodel, illustrated in Figure 3.8. Following documented conventions, a CASE tool takes the initial

model and transforms it into an intended model complete with all necessary detail. As discussed earlier

in Section 2.3.1, implementing this process within a CASE tool is essential in order to maximize the

benefits of MDE [160].

This approach also maps well onto evolutionary development processes, as once the base model

is transformed into an intended model, it may be used as input to other tools such as code generators

or analysis tools [266], and evaluated in order to obtain feedback. This feedback can then influence

refinements to the base model as part of a new development iteration [324].

Importantly, model completion needs to complete the intended system based on incomplete knowl-

edge, a process known as non-monotonic reasoning [103]. Applied to our domain, this states that when

we add additional information to the system, any information inferred may be retracted in the presence

of new knowledge. This reasoning philosophy provides a great deal of flexibility.

To illustrate this point, consider a user interface element representing a boolean property within

the system. This interface element is part of a platform-independent model, allowing us to ignore the
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Figure 3.8: Model completion within model development, adapted from Wright and Dietrich

[324]

technical details of its implementation. It is reasonable to assume that by default, this property should

be rendered by a checkbox. However, the developer may instead wish to represent this property with a

drop-down list containing the values yes and no. In this case, the default checkbox should be removed;

it should no longer be generated through model completion, nor override this new knowledge.

If negative existentials are used in defining part of a convention, non-monotonicity may be a con-

sequence. For example, this default checkbox rule can be expressed non-monotonically as:

IF (there exists a boolean property)

AND (there does not exist an editor for it)

THEN (create a checkbox editor for it)

Model completion restricts retraction within non-monotonic reasoning to only facts inferred by

the reasoner itself; that is, the reasoning process can never retract any information in the base model.

This is important to ensure developer effort is never inadvertently discarded.

3.2.3 Model Completion Semantics

In order to prove the consistency and correctness of this inference process within a model-driven

implementation, we need to investigate the formal semantics of models and the model completion

operation. This definition is essential to ensure that model completion preserves consistency with the

original model [179]. Using the metamodel definitions provided earlier in Section 3.1.10, the model

completion process itself will now be defined formally; for more detail, the interested reader is referred

to Wright and Dietrich [324].

Given a meta-model S such that model ∈ 2M and S ⊆ 2M, model completion is defined as a

function C : S → S operating within the same meta-model. That is, all completed models will also

be valid models in our domain. For a model completion C(X) operating on a model X ⊆ S , two
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Φ1 = property(a)

Φ2 = property(x)∧¬∃y : editor(y)∧ editorFor(x,y)

→ checkbox(newCheckbox(x))∧ editorFor(x,newCheckbox(x))

Φ3 = checkbox(x)→ editor(x)

Φ4 = dropdown(x)→ editor(x)

Figure 3.9: Definition of the rule program C for the default checkbox rule convention, adapted

from Wright and Dietrich [324]

A = {property(a)}

C(A) = {property(a),checkbox(newCheckbox(a)),

editorFor(a,newCheckbox(a))}

Figure 3.10: Model completion C(A), adapted from Wright and Dietrich [324]

conditions need to be imposed:

1. Extensive: Model completion must not retract any existing information in the base model, i.e.

X ⊆C(X).

2. Idempotent: Once the intended model has been completed from a base model, applying model

completion on this intended model will not change the model, i.e. C(X) =C(C(X)).

These two conditions are part of Tarski’s classical axioms for inference operators [282]. Mono-

tonicity is not a necessary condition; in the face of new information within a base model, previously

inferred knowledge may need to be retracted, i.e. X ⊆ Y 6⇒C(X)⊆C(Y ).

In order to implement these conditions on the model completion function, new elements must be

created according to a factory function, and introduced into the intended model using the concept

of stratification [288]. This allows for the documented conventions to be represented as a set of

rule formulae in a rule program, which may be evaluated against a model instance to complete the

intended model. By using an insertion queue in the implementation of the factory function, the model

completion process has been demonstrated to satisfy the extensive and idempotent conditions on C(X)

[324].

TODO If I described the insertion queue/stratification/rank in more detail, I could include the

graph showing (rank) vs (number of elements) as per Wright and Dietrich [324].

Within this definition of model completion, the default checkbox rule may be expressed using the

rule program C illustrated in Figure 3.9. This can then execute on an initial model A to create the

completed model C(A), as in Figure 3.10. The full expansion of the steps necessary to complete the

intended model in this example through model completion is not provided here; the interested reader

is instead referred to Wright and Dietrich [324].

TODO Discuss how an L-Model is defined as a language L(R,F,C,V,=)? See Wright and Dietrich

[324].

3.3 Visual Modelling

As discussed by Moody [211], visual representations of models can be more effective than textual

representations, because they can tap into the capabilities of the powerful human visual system. In
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particular, he argues that diagrams are believed to convey information more effectively, concisely and

precisely than textual language, and the information is more likely to be remembered. Visual notations

are also particularly important when communicating with end-users and customers.

Depending on the requirements of the artifacts, visual modelling can range from strictly formal

approaches – visual models can be exactly as formal and structured as textual models [211] – to

informal approaches as used by individual designers. UML models are intended to be drawn by

hand, as communication was thought to be more important than automation (and therefore precision).

However, recent revisions of UML have focused on improving its architecture and formalism in order

to support software integration and reasoning [168].

Visual representations can be particularly powerful when applied to the domain of model-driven

development, as visual representations are themselves models. The combination of a domain-specific

language and an accompanying visual representation can be termed as a domain-specific visual lan-

guage, as defined by Grundy et al. [122]. This visual language can be defined from a metamodel

specification with a certain level of automation [274]. However, when developing a visual language

for the representation of a model, it is important to document the rationale and design decisions used

[211, 122].

There are situations where visual modelling may not be appropriate, and a textual representation

would be better. Vlissides and Linton [290] argue that graphical models are best for domain-specific

languages, rather than general-purpose languages. Graphical languages generally lack efficiency of

expression; that is, it is generally very difficult to visually design a complex algorithm [274]. Fi-

nally, without the support of a graphical modelling environment or framework, the implementation

of a visual modelling language is often more difficult than the implementation of a textual modelling

language.

3.3.1 Visual Metaphors

A metaphor is a linguistic device where one or more words for a concept are used outside their

conventional meaning, to express a similar concept [177]. Metaphors are very popular in software

development, in particular interface metaphors for user interface design; system metaphors for the

development of the software system; and the Rational Unified Process notion of metaphor as a simple

system architecture [?]9. These metaphors reduce the mental load for developers, and improve the

accessibility of the system [247]. Metaphors can also apply to visual modelling as a visual metaphor;

that is, a metaphor used to relate a visual representation of a model instance with a foreign concept.

Barr et al. [16] expand on the work of Lakoff and Johnson [177] to propose a taxonomy of interface

metaphors. This taxonomy includes orientational, ontological, and structural metaphors. Structural

metaphors – those that deal more directly with physical objects in the real world [16] – are particularly

prominent in user interface design [16]. For example, the “desktop metaphor”, which represents files

within a file system as objects on an actual desk, is an instance of a structural metaphor.

3.3.2 Visual Metaphors in Existing Models

Existing visual modelling languages already use visual metaphors in their design and implementation,

and this thesis will discuss some of the metaphors identified in WebML and UWE. Each of the WebML

models represented visually has a particular visual metaphor, although the WebML specification does

9TODO: Consider removing this, it might not be necessary.
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not define these metaphors directly. The WebML hypertext model, for example, appears to use a visual

metaphor of “a web application is the flow of data”, because the relationships between content units

are expressed as a flow.

Some papers on WebML claim that each content unit in the model uses a visual metaphor; for

example, Di Martino et al. describe that “the MultiMap Unit is a visual metaphor for a map viewer

able to render both vector and raster data arranged in layers” [65]. According to the definition of visual

metaphor in this thesis, this is not a visual metaphor, because their description only defines the visual

representation of the rendered unit, and not the visual representation of the unit itself within a model

instance.

Each model of UWE also has a particular visual metaphor, although these metaphors are also not

explicitly discussed. Many UWE models are extensions of existing UML models – such as class di-

agrams and activity diagrams – so these models reuse their existing metaphors. On the other hand,

some UWE models use entirely new metaphors; for example, the navigation structure model repre-

sents the web application using the metaphor of “web application navigation using states and menus”

[171]. Since UWE reuses common visual metaphors (from UML), it is easier for new users to pick

up and understand these models, and it also promotes sharing these models with users who already

understand the metaphors of UML. It would therefore be beneficial for a modelling language to reuse

existing visual metaphors where appropriate.

3.3.3 Visual Modelling Software

While visual models can be drawn by hand and exchanged manually, software can be used as part of

the process. Visual modelling software is a strictly optional component of model-driven approaches,

but it can improve the efficiency of model design and development, and the quality of communication

with other end-users. These editors, sometimes called graphical object editors, allow a user to ma-

nipulate the graphical representations of model instances directly [290]. Visual modelling software

has already been discussed in depth by existing literature [290, 211, 254]; a range of existing visual

modelling frameworks is discussed later in Section 6.3.

Since these visual editors provide interactive representations of an underlying model instance,

these editors map naturally to the model-driven development approach advocated in this thesis. Since

graphical editors often have very similar functionality – such as printing, layout and shape types –

metamodels may be used to simplify the implementation of a model-driven graphical editor. These

model-driven graphical modelling environments are represented as a model instance, and translated

using model transformations into the source code of the final graphical editor.

3.4 Model Instance Verification

As discussed earlier in Section 2.3.1, an important feature requirement of a modelling language for

RIAs is to support integration with formal verification tools. Software verification of an implemented

application is the standard method for verifying correctness properties on that application [205], and

verifiable web application properties include non-functional requirements such as broken links, syntax

validation, load testing, page response time [22].

However, in many cases it is preferable to verify a model instance instead of an implementation,

as the relative cost of fixing an error dramatically increases over time [247, pg. 197]. This also allows

properties of web applications such as concurrency and user interaction to be evaluated directly, and
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often with less performance impact than testing an implementation [?]. There is a significant body of

existing work on verifying model instances reverse-engineered from an implementation [21, 64, 269],

keeping in mind that it is usually unfeasible to extract structural design intent from code [195].

3.4.1 Validation vs. Verification

Validation and verification are two closely related concepts, and are often combined together into the

general term verification & validation (V&V). The differences between these two terms are fairly

subtle, as illustrated by the wide range of definitions published by existing work.

For example, Adrion et al. [3] defines validation as “determination of the correctness of the final

program or software produced from a development project with respect to the users needs and re-

quirements” by verifying each stage of the development life cycle, and verification as “in general, the

demonstration of consistency, completeness, and correctness of the software at each stage and between

each stage of the development life cycle.” Adrion et al. also distinguishes valid input separately from

validation, as data that lies within a particular domain.

Conversely, Sargent [262] defines verification as “ensuring that the computer program of the com-

puterized model and its implementation are correct”, but it is unclear what “correct” is referring to;

and validation as “substantiation that a computerized model within its domain of applicability pos-

sesses a satisfactory range of accuracy consistent with the intended application of the model”. These

definitions appear to be at odds with those defined by Adrion et al.

In this thesis, the definitions by Pressman [247, pg. 479] and Boehm [31, pg. 37] are adapted to the

model-driven domain in order to distinguish the differences between these two terms. In particular,

the following definitions of V&V are used in this thesis:

Model verification refers to the set of activities that ensure that the model correctly implements a

specific function; and

Model validation refers to a different set of activities that ensure that the built model is traceable to

customer requirements.

In practical terms, this means that a requirements-independent check of a model instance – such

as checking that all element IDs are unique, or that all private data is secure – is an instance of a model

verification activity. Conversely, model validation is the process in checking that the model instance

implements the requirements of the model – such as making sure that the “View Product” page is

present, or that a particular key is secure.

These definitions are not consistent with some published research which erroneously use the terms

interchangeably. For example, Ricca and Tonella [253] propose that there are two types of web ap-

plication testing techniques, static verification and dynamic validation; but in this thesis, these tests

would both be treated as instances of verification, as they do not test the application requirements

themselves.

3.4.2 A Formal Definitions of Constraints

One may consider model instance verification as a process operating on syntactically correct models

that identifies invalid models through constraint violation. Earlier in Section 3.1.10, a formal definition

of metamodels and their model instances was provided based on Wright and Dietrich [324]; this

definition may be extended to describe the process of model instance verification.
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In particular, a model X consists of a set of artefacts from M constrained by a particular metamodel

S , i.e. X ∈S ⊆ 2M, with S defined by a language L(R,F,C,V,=). A set of constraints may be used

to identify valid models by defining a verification function V : 2M → {0,1}; a particular model X is

valid according to this function if V (X) = 1.

A constraint is defined in terms of a verification language Lver, consisting of type predicates10 ,

n-ary relations, variables and standard predicate logic connectives and quantifiers. A constraint has

the the following form11:

∀x1,...,xn
T1(x1)∧ ...∧Tn(xn)→ P(x1, ...,xn)

where n represents the arity of the constraint; x1, ...,xn are variables; Ti represent unary type

predicates within the relations set LR; and P a constraint formula containing only the free variables

x1, ...,xn. A model is therefore valid with respect to this constraint if this formula is satisfied. The

unary type predicates Ti ensure that the constraint is always satisfied if evaluated against instances of

non-matching types.

The expressiveness of the verification language Lver may impact on the performance and decid-

ability of its constraints; for example, OWL 2 Full [308] is the most expressive language within the

OWL family, but its expressiveness has been proven to be undecidable [215]. Similarly, relations

expressed in CrocoPat may be queried by identifying graph patterns, but this subgraph isomorphism

problem is NP-complete [27, pg. 143]. Different verification engines may therefore be classified on

expressiveness restrictions, and on their maximum constraint tuple size.

Expressiveness Criteria

In this thesis, the expressiveness of a verification language is defined in terms of the permitted syntax

of constraint formulae. In particular, three non-exclusive categories of language expressiveness are

considered:

1. Functions: Within verification languages such as OCL, constraint predicates are defined in

terms of functions defined within the model instances, and additional functions may be defined

within the language. It is not possible to define additional relations within the language.

For example, a constraint “all Named Elements must define a name” may be specified using

the predicate Pnamed(x) = ∃n : name(x) = n. The resulting constraint may then be defined as the

∀xTNamed Element(x) : Pnamed(x).

2. Relations: Within verification languages such as OWL/RDF, constraint predicates are defined

in terms of relations, and additional relations may be defined within the language using first-

order logic. Relations may use self-reference to support recursion.

A constraint “a Frame cannot redirect to itself” may first be specified through the relation

Rredirects(x,y) = ∃e,w : TEvent(e)∧onAccess(x,e)∧TECA Rule(w)∧ f rom(w,e)∧ to(w,y).

An additional relation may then define the transitive closure of this relation through Rredirects(x,y)=

∃z : Rredirects(x,z)∧Rredirects(z,y).

The resulting constraint may then be defined as ∀xTFrame(x) : ¬Rredirects(x,x).

10In this thesis, types are represented as unary predicates; for example, the type Visible Thing is represented as the type

predicate TVisible Thing(x) on a model artefact x of that type, as illustrated in Wright and Dietrich [324].
11TODO: Reformat ∀ to use matrix style.
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3. Higher-order Logic: Within verification languages such as OCL and OWL, the verification

language supports the definition of additional relations or predicates using higher-order logic.

For example, a relations-based verification language may provide the higher-order operator TC

to represent transitive closure for a particular relation. This would permit the transitive closure

definition of the previous constraint to be defined instead as Rredirects(x,y) = TC(Rredirects(x,y)).

Similarly within a functions-based verification language, the higher-order aggregation function

fold may be used to evaluate a function over a collection of artefacts and reduce it into a single

value.

If the level of expressiveness of each language impacts on the performance of a model instance

verification process, it may be desirable to support many verification languages simultaneously. This

would allow simple constraints – implemented using a functions-based verification language – to be

evaluated quickly and regularly, while more complex constraints – implemented using a relations-

based language – may be evaluated less frequently, due to their resource requirements.

Model Checking

Model checking is defined by Baier and Katoen [10, pg. 11] as “an automated technique that, given

a finite-state model of a system and a formal property, systematically checks whether this property

holds for (a given state in) that model.” In particular, these constraints are checked against the entire

state space of the system [133].

For a system to be evaluated using model checking, it must first be translated into a list of potential

states and the permitted transitions between these states; this system model may then be evaluated

against a property using a language such as LTL [10]. These constraints cannot be described using

the general constraint form defined earlier in Lver, and a formal definition of model checking is well

outside the scope of this thesis12.

However, since a model checker must navigate through all of the possible states of a modelled

system, there is a significant performance penalty in evaluating this process. Consequently model

checking may only be evaluated infrequently – for example, when a model instance is used to generate

a production system, or as part of a long-running automated process to catch bugs – and it is often

preferable to express a constraint using one of the verification languages discussed earlier.

3.4.3 Discussion

As each of these verification approaches have different performance characteristics, model instance

verification will be implemented with regards to three categories of language expressiveness. This

will allow a model developer to evaluate a model instance against increasingly precise definitions of

correctness, dependent on the resources available to the developer. In this thesis, these three categories

are defined as follows:

1. Function Language: Functions-based constraint languages will be used to quickly verify con-

straints, and will therefore be evaluated frequently against the most common design problems.

2. Relation Language with Higher-order Logic: Relations-based constraint languages with sup-

port for higher-order logic constructs will be used to verify more complex constraints, and will

therefore be evaluated less frequently against more complex design problems.

12TODO: Is there a formal definition in Baier and Katoen [10]?
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3. Model Checking Language: Finally, a model checking approach will be used to evaluate be-

havioural correctness of the modelled systems. As this approach requires significant amounts

of resources, it is intended that this approach will be evaluated fairly infrequently.

3.5 Conclusion

In this chapter, different approaches and technologies to model-driven development have been inves-

tigated to assist in the design and implementation of a new modelling languages for RIAs. In this

proposed modelling language, both the viewpoint and metamodelling architectures of the MDA will

be considered; model transformations will be used to translate models into executable code; existing

visual metaphors will be used for the visual representation of the modelling language where appro-

priate; and the technique of model completion will be introduced to improve the flexibility of model

instance development.



Chapter 4

Rich Internet Application Modelling

Concepts

As discussed earlier in the Background chapter, a modelling language for RIAs may need to support

the expression of many web concepts, such as events, users or security. This chapter will investigate

and discuss a range of existing approaches and implementations of each concept, but will not explicitly

discuss the suitability of each approach with respect to RIA modelling languages. These discussions

will instead be used to inspire the definition of the modelling language in the following chapter.

4.1 Managing Complexity through Decomposition

When developing a modelling language, it is important to consider the complexity of the resulting

model instances, which can be strongly influenced by the design of the language. It is often more

desirable to work with many simple model instances than to work with a single monolithic model

instance; this is particularly true when working with a visual modelling language [211].

This section will investigate different techniques for dealing with the complexity of model in-

stances1. These techniques are not mutually exclusive, but rather represent a variable measure of

the extent that each technique is used; for example, different systems can have differing degrees of

modularity [12].

4.1.1 Modularity

The most common way of reducing complexity of large systems is to divide them into smaller parts

or modules, a technique called modularity [?, pg. 39-66]. Modules are units in a larger system that

are structurally independent, but work together as illustrated in Figure 4.1, with different levels of

interconnectivity representing differing degrees of modularity [12].

Modularity can encourage system reuse as long as the system has been implemented correctly

[?, pg. 39], as modules with few dependencies on other modules may be more easily reused in other

contexts. Modularity also encourages the use of small units, rather than larger ones which may be

more difficult to understand. However, a poorly-implemented modular system can be confusing and

difficult to maintain, if modules are made too small or too large, or there are too many dependencies

1The complexity of a modelling language, rather than its instances, has been discussed earlier with metamodelling

metrics in Section 2.6.2.



58 4 Rich Internet Application Modelling Concepts

Figure 4.1: Modular Modelling

Figure 4.2: Hierarchical Modelling, adapted from Moody [211]

between modules. Without adequate documentation it can also be difficult to understand the bigger

picture of a modular system. The effectiveness of a module is often expressed in terms of cohesion

and coupling, as discussed by Pressman [247, pg. 353-355].

It appears that WebML [43], as discussed earlier in Section 2.4.1, has been designed to support

modularity in its resulting model instances. In particular, an entire web application is expressed in a

single monolithic model, but certain areas – such as pages, and operations – may be grouped together,

in a manner similar to a module.

4.1.2 Hierarchical Modelling

As discussed by Moody [211], hierarchy is “one of the most effective ways of organizing complexity

for human comprehension as it allows systems to be represented at different levels of detail, with

complexity manageable at each level.” It supports the decomposition of a complex system into separate

models with each model becoming a part of a higher-level model, as illustrated in Figure 4.2.

Hierarchy is different from modularity in terms of the relationships between modelled elements; in

modularity, the relationships connecting modules are those between individual model elements (and

not the modules themselves), whereas the relationships in hierarchy are those between the higher-level

parts. That is, modularity is focused on the encapsulation of elements as a single module, whereas

hierarchy is focused on the decompositional layers of encapsulated elements. This means that a mod-

ular system may also be hierarchical if many of the modules may be decomposed, as discussed by [?,

pg. 40].
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Figure 4.3: Aspect-Oriented Modelling, adapted from Kiczales et al. [162]

Hierarchical modelling encourages both top-down design and bottom-up design, in the sense that a

model developer may abstract away complexity into many layers. It is important to provide appropriate

context in a hierarchical environment, to orient the current view with the rest of the modelled system

[211]2. One example of a modelling language designed with hierarchy in mind is UML [227], where a

system may be progressively decomposed through deployment diagrams, component diagrams, class

diagrams, and activity diagrams.

4.1.3 Aspects

Aspect-oriented modelling adopts aspect-oriented programming [85, 162] to a model-driven environ-

ment, supporting the modelling of separate concerns of a model instance in separate models, which are

then integrated together into a target model [91]. Concerns that span over the entire model are known

as cross-cutting concerns, which are integrated as aspects. These aspects are integrated together us-

ing an aspect weaver, as in Figure 4.3. The intention behind aspects is to decompose cross-cutting

concerns in a complex model into simpler aspects, which can also simplify the original system model.

Using aspect-oriented models has already been done in the domain of modelling web applications.

For example, UWE uses aspect-oriented modelling to support the modelling of web application adap-

tivity [18]. Other web application concerns such as security, logging and user authentication can also

be modelled using aspects with various degrees of independence.

As a relatively recent innovation, aspect-oriented approaches still have a number of important

issues that need to be resolved. Aspect-oriented programming always depends on the underlying

code that they weave, hindering their testability and reuse [5]. Understanding the interaction between

many diverse aspects in a system, and how these interactions evolve over time during maintenance –

known as cognitive distance – remains a critical issue [4]. The success of an aspect-oriented modelling

approach is therefore very dependent on its implementation.

2In the proof-of-concept implementation of IAML, this is achieved by using breadcrumbing and shortcuts, as discussed

later in Section 7.4.4.
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4.1.4 Discussion

Each of these techniques approach complexity decomposition in a different way, but they are not

mutually exclusive, and may be combined in almost any way. As discussed earlier in Section 2.7.2,

software development should adapt existing software process models to the individual needs of the

project; similarly, complexity decomposition approaches should be adapted to meet the needs of a

modelling language.

For example, it would be possible to design a system using aspect-oriented modelling, with the

modelled aspects following a hierarchical design; conversely, it would be possible to design a system

using hierarchical modelling, and then apply aspect-oriented modelling to the different levels of hier-

archy. Each of these systems would have different benefits and drawbacks; in the case of the former,

it would be difficult for lower levels of the aspect hierarchy to communicate, whereas with the latter

the aspects could not consider the higher levels of the hierarchy.

4.2 Events

As discussed earlier in Section 2.3.1, RIAs may be considered event-driven applications, and an RIA

modelling language should have strong support for modelling web application events. In this thesis,

the definition of an event is adapted from the UML specification; that is, an event is defined as “the

specification of some occurrence that may potentially trigger effects” [227, pg. 440].

An event may trigger a particular action, and this invocation relationship may be restricted with

a condition; this definition forms an Event-Condition-Action (ECA) rule, forming the basis of event

definitions in this thesis. As discussed by Papamarkos et al. [238], ECA rules have been used in many

settings, including active databases, publication/subscription technology, and in the implementation

and specification of business processes. An ECA rule has the general syntax [68, 238]:

on event if condition do action

In order to select a conceptual approach for the modelling of events, the following sections will

briefly illustrate and informally evaluate a range of existing approaches in terms of expressibility and

simplicity. A similar approach was performed during the development of the R2ML rule modelling

language [111]; Wagner et al. [311] evaluated seven existing approaches for visual rule modelling as

the basis of event modelling in R2ML. For each modelling approach, the representation of a generic

ECA rule will be illustrated in order to highlight the differences in syntax.

4.2.1 UML

UML permits the modelling of event handlers using AcceptEventActions [227, pg. 235], which can be

used in UML activity diagrams to trigger behaviours. In UML, both signals and operation calls can

be considered as events, and consequently SendSignalActions can be used to model a triggered event,

with incoming parameters modelled using InputPins. This specification allows for an ECA rule to be

modelled as illustrated in Figure 4.4.

Depending on the complexity of the ECA rule, a number of visual optimisations may be per-

formed; these optimisations are not illustrated in Figure 4.4. If the condition is simple or the action

is not restricted by a condition, the use of the DecisionNode with attached decision behaviour is not

necessary. If the condition can be reduced into an instance of ValueSpecification, this specification can

be used as a guard condition on a single ActivityEdge.
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Figure 4.4: Event-Condition-Actions in UML activity diagrams [227]

Figure 4.5: An AORML Interation Pattern Diagram, adapted from Wagner et al. [311]

UML also defines a number of fundamental events, such as ChangeEvent and MessageEvent,

which are all instances of the Event abstract class. In order to define new events on the UML level, it

appears that a UML Profile must be defined; conversely, to define new events on the model instance

level, it appears that a SignalEvent may be used to handle instances of Signals as events.

4.2.2 AORML

The Agent-Object-Relationship Modelling Language (AORML) [309] is an agent-based modelling

language that can describe the interactions between multiple agents in a system. As the name implies,

AORML is intended to model agents rather than software components, with ECA rules owned by a

parent agent; this may hinder the use of AORML in systems which are not agent-based. This language

supports a wide range of visual notations for event modelling; for example, AORML can be used to

describe ECA rules in terms of an agent as in Figure 4.5 [311]3.

4.2.3 URML

The REWERSE Working Group I1 developed the UML-based Rule Modelling Language (URML)

[312] to allow visual rule modelling, and this metamodel largely overlaps with the metamodel of

R2ML. In particular, URML can be “considered as a language that is derived from R2ML in order to

provide UML-based rule modelling” [312].

3TODO: Need better reference
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Figure 4.6: Modelling Reaction Rules in URML, adapted from Wagner et al. [312]

Figure 4.7: Visual Event Handler Definition in Kaitiaki, adapted from Grundy et al. [124]

URML supports three types of rule modelling – derivation rules, production rules, and reaction

rules – but only reaction rules will be considered in this section, as their design is the most similar

concept to ECA rules. The visual modelling of reaction rules in URML is illustrated in Figure 4.6, as

defined by Wagner et al. [312].

4.2.4 Kaitiaki

As described by Liu et al. [189], the Kaitiaki project uses the Event-Query-Filter-Action metaphor

in order to describe and define event handlers, which is very similar to ECA rules. This events

metaphor has been integrated with the web service composition specification language ViTABaL-WS

Li et al. [185]. This approach is developed with a proof-of-concept implementation in the Eclipse-

based Marama framework [124].

4.2.5 Event Algebra

Events can also be modelled in a more formal way using event algebra, especially when modelling the

timeline of the interaction between different event instances. As discussed earlier in Section 3.1.9, the

definition of the formal semantics of a modelling language may be used to identify undesirable prop-

erties of a modelled system, and these benefits similarly apply in the case of event algebra. Similarly,

event algebra may be used to improve the expressiveness of model verification constraints.

A full discussion on the different types of event algebras is well outside the scope of this thesis,

but one of these event algebras will be briefly discussed to illustrate the concept. Zimmer and Unland

[329] propose a metamodel for modelling complex events in active database systems, and some of the

operators defined by their metamodel are listed in Table 4.1. These operators indicate some of the

potential interactions that may occur between two distinct event instances.
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Operator Summary

ei1 ; ei2 Sequence: instances have to occur in the given order.

ei1 == ei2 Simultaneous: instances have to occur simultaneously.

ei1 ∧ ei2 Conjunction: instances have to occur, in any order.

ei1 ∨ ei2 Disjunction: at least one of the instances have to occur, in any order.

ei1 ¬ ei2 Negation: the specified events cannot occur within the specified instance pe-

riod.

Table 4.1: Selected event algebra operators for composing complex events, adapted from an

event metamodel proposed by Zimmer and Unland [329]

// Introduced in DOM Level 2:

interface MouseEvent : UIEvent {

readonly attribute long screenX;

readonly attribute long screenY;

readonly attribute long clientX;

readonly attribute long clientY;

readonly attribute boolean ctrlKey;

readonly attribute boolean shiftKey;

readonly attribute boolean altKey;

readonly attribute boolean metaKey;

readonly attribute unsigned short button;

readonly attribute EventTarget relatedTarget;

void initMouseEvent(...);

};

Listing 3: The IDL definition of the MouseEvent interface, adapted from the DOM Events

specification [295]

4.2.6 DOM Events

As part of the definition of HTML, the W3C defined an events model known as DOM Events4 which

specifies a range of event interfaces on many different web browser elements. An event may be

bubbleable, in that the event will “bubble” up the element hierarchy and can be intercepted by any of

its parents; and an event may be cancelable, in that the default behaviour of the event can be overridden

[295].

For example, the DOM event click is defined for “most elements” in the HTML 4.01 definition, and

occurs “when the pointing device button is clicked over an element” [294]. This event is bubbleable

and canceable, and occurs after the mousedown and mouseup events have been fired. This event can

therefore be used to intercept a user clicking on a hyperlink, and cancelled to prevent the web browser

navigating to the hyperlink destination.

When a DOM event is triggered, an event object instance is also created and provided to the event

handler with specific information about the event. For example, the click event creates an instance of

the MouseEvent interface, which provides attributes such as the position of the mouse on the screen

when the click occurred; the state of keyboard modifier keys, such as shift and ctrl; and the button

that triggered the click. The IDL definition [221] of this event interface is provided here in Listing 3.

4DOM events are also named DOM Level 2 Events, to distinguish the event model from a deprecated event model not

formally defined by the W3C known as DOM Level 0 [295].
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Figure 4.8: Operation modelling using UML activity diagrams [227]

4.3 Operation Modelling

Whilst events and actions refer to different types of activities, operation modelling refers to the mod-

elling of the lower-level behaviours that make up these activities. This type of modelling emphasises

the execution flow, data flow and conditions in these behaviours. A well-defined model-driven devel-

opment approach can allow a modelling language to support multiple forms of operation modelling;

for example, an activity could be modelled in a visual language, or textually in a general-purpose

programming language. In this section, two visual operation modelling languages will be briefly dis-

cussed.

4.3.1 UML Activity Diagrams

UML activity diagrams [227] model behaviours of different aspects of a system at a lower level than

other UML diagrams [23], and “emphasizes the sequence and conditions for coordinating lower-level

behaviors, rather than which classifiers own those behaviours. These are commonly called control

and object flow models” [227, pg. 295]. A sample UML activity diagram is included in Figure ??;

this activity implements the operation of changing the visibility of a particular user interface element,

based on the value of an input parameter.

The UML activity diagram notation does not support primitive data operations, such as arith-

metic5; this type of behaviour must either be defined informally, or by instantiating an extension

within a UML Profile. UML activity diagrams can model a significant range of behaviours, but it is

not possible to consistently compile these diagrams into code, because UML does not have a defined

execution semantics (as discussed earlier in Section 2.4.2).

The specification of UML proposes that formal execution semantics may be provided to the UML

activity diagram by translating diagrams into UML statecharts [227]; however, such a translation is

5The UML specification does not discuss why arithmetic is not supported. Perhaps this is due to the language design

goal of staying platform-independent, or perhaps it is intended that expression languages such as OCL should be used.
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Figure 4.9: Operation modelling of a online shopping business process using BPMN, adapted

from Torres et al. [287]

not provided in the latest edition of the UML specification, and Eshuis and Wieringa [78] argue that

this process is inherently flawed as activity diagrams are too expressive. Eshuis and Wieringa instead

translate activity diagrams into workflows in order to provide execution semantics to UML activity

diagrams [78].

4.3.2 Business Process Modelling Notation

The Business Process Modelling Notation (BPMN), defined and specified by the OMG [?], is a vi-

sual modelling language for graphically representing the higher-level behaviours involved in business

processes, with a notation that is intended to be immediately understandable by all business users. In

terms of common business workflow events, the expressibility of BPMN has been found to be similar

to UML activity diagrams by [?], however it is not clear whether the two notations are fully equivalent

in terms of expressibility.

Similarly to UML activity diagrams, the formal semantics of the behaviour of BPMN model in-

stances have not yet been defined. Wong and Gibbons [320] argue that the existing approach to trans-

late BPMN instances into Petri nets in order to obtain execution semantics is incomplete. However,

BPMN has already been used in the web application modelling domain to implement workflows, as

discussed by Brambilla et al. [34].

A sample BPMN diagram of the business process behind a simple online shopping web applica-

tion is illustrated here in Figure 4.9, adapted from Torres et al. [287]. This diagram illustrates the

responsibilities of each entity within the process and the communications between them, and also

highlights how similar the BPMN visual notation is to the UML activity diagram notation.

4.3.3 Predicate Modelling

In both UML and BPMN, predicates are often written textually, as illustrated earlier in Figures 4.8

and 4.9. While this simplifies the model instance, it also makes it difficult to translate the predicate

into executable code. However, predicate modelling can be considered a form of operation modelling,

on the restriction that the operations must return either true or false; a formal distinction between

operations and predicates is provided later in Section 5.3.1.
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This implies that the operation modelling techniques – such as UML activity diagrams, or BPMN

– may be used to model conditions themselves. However in some situations, the additional complexity

of designing a simple expression in a visual modelling language may not be desirable. Embeddable

textual expression languages, such as OCL [225] and XPath [305], may be used instead in these

situations to simplify the instantiation of simple conditional expressions. For example, the UML

specification permits the definition of conditional constraints using both English language and OCL

[227, pg. 58].

4.4 Lifecycle Modelling

As discussed earlier in Section 2.3.1, the development of certain types of RIAs may be simplified by

supporting the concept of lifecycle management [323]. In this thesis, lifecycle modelling does not

refer to a software engineering lifecycle, which is the more common usage6; but rather refers to the

lifecycle of a particular component, scope or application in a software system.

In particular, lifecycle modelling can be considered as the modelling of the different states of

a component; the transitions between these states; and integrating these transitions to fire transition

events when a state transition has occurred. UML supports this modelling of lifecycle events explicitly

through the UML state diagram. Every Transition from one state to another can specify a Behavior

which will be performed when the transition fires, and domain-specific events may be described using

Signals [227]. Transitions can also be specified to execute or capture particular events, including the

sending or receiving of signal actions.

4.4.1 Implementation-Level Examples

To illustrate the power of modelling the lifecycle of software systems, three examples of lifecycle

implementations will be briefly discussed.

OSGi

OSGi is a dynamic component platform for Java, where applications and components (known as bun-

dles) may be added, updated, installed or remove at run-time [283]. The OSGi specification provides a

component lifecycle for each bundle, represented here as a state diagram in Figure 4.10. The lifecycle

events as part of a particular bundle can be listened7 to by other bundles in order to perform complex

bundle lifecycle management.

JUnit

JUnit is a popular framework for developing unit test cases for Java software [11], and is also discussed

in further detail in Section 7.9. To assist writing tests, JUnit supports a number of lifecycle methods

and annotations, as illustrated in Table 4.2. These lifecycle methods and annotations permit the unit

test case developer to extract common functionality, reducing code duplication which would negatively

impact the maintainability and understandability of test suites.

6For example, Pressman [247] describes the linear sequential and evolutionary models as lifecycles, which are instead

defined in this thesis as software process models in Section 2.7.2.
7In OSGi, this is achieved through the BundleListener interface.

http://www.osgi.org/javadoc/r4v42/org/osgi/framework/BundleListener.html
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Figure 4.10: Component lifecycle events in OSGi [283], represented using a UML state dia-

gram

Potential Lifecycles of Rich Internet Applications

As part of the survey of existing modelling langauges for RIAs, Wright and Dietrich [323] discuss a

range of potential lifecycles as part of a Rich Internet Application. They do not specify a modelling

approach or the actual events that may occur, but provide an overview of the types of lifecycles where

modelling may be necessary. A summary of these potential lifecycles are reproduced here in Table 4.3.

4.5 Type Systems

Being able to model the definition, access and creation of data is essential for a web application

modelling language, and is the basis of all web modelling languages (termed data-intensive modelling

languages by Ceri et al. [43]) such as WebML [42]. It is still debated whether programming languages

Method Annotation Summary

n/a @BeforeClass Initialises the test state before a class containing unit tests

are executed.

setUp() @Before Initialises the test state before a particular unit test.

testXXX() @Test Executes a particular unit test.

tearDown() @After Cleans up after a unit test has completed.

n/a @AfterClass Cleans up after a class containing unit tests has com-

pleted.

Table 4.2: JUnit lifecycle methods and annotations [20]
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Layer Scope Example Use

Component elements in the DOM when a page widget is loaded, move focus to a text

box

Request a single HTTP request transform XML to WML at end of request

Page one page can contain many requests

over AJAX

close an opened window when the parent page has

closed

Session a visitor has at least one session delete shopping cart on session timeout

Login can span multiple sessions, without

manual re-authentication

save temporary shopping cart to database on lo-

gout

User represents the user itself when a user closes an account, delete all their blog

entries

Application represents the entire application when application is created, create temporary ad-

ministrator accounts

Table 4.3: Possible lifecycle layers of Rich Internet Applications and their potential use,

adapted from Wright and Dietrich [323]

should be typed; while they potentially increase the workload of a developer, a well-designed type

system can capture many routine programming errors before the system is deployed [39].

A particular type system can possess a variety of features and designs; for example, the system

can be typed or untyped; provide static, or dynamic type checking; and support safe or unsafe typing.

These type system definitions are discussed in detail by Cardelli [39], and will be briefly summarised:

• Dynamically checked language: “A language where good behaviour is enforced during execu-

tion.” This often means that an object can have many different types over its lifetime.

• Statically checked language: “A language where good behaviour is determined before execu-

tion.” This often means that an object can only ever have one type.

• Strongly checked language: “A language where no forbidden errors can occur at run time (de-

pending on the definition of forbidden error).” Strongly checked languages prevent the implicit

conversion of one type instance to another.

• Weakly checked language: “A language that is statically checked but provides no clear guar-

antee of absence of execution errors.” Weakly checked languages permit the implicit conversion

of one type instance to another.

4.5.1 Primitive Types

In a type system, a primitive type refers to the smallest datatype that can be expressed, and may also

be termed an atomic type [299]. In other words, the type can not be expressed as the composition or

restriction of any other types in the type system8. These primitive types are often then used in the

composition of more complex types, and instances are often immutable. Because they refer to the

smallest expressible type of data, all languages which possess a type system will have at least one

primitive type.

8This constraint is discussed in the XML Schema specification: “primitive datatypes are those that are not defined in

terms of other datatypes; they exist ab initio” [299].
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4.5.2 Derived Types

Primitive types can be used to define derived types through a number of mechanisms, including com-

position, restriction, or extension. These mechanisms may be defined formally within the type system,

allowing for type reasoning to ensure the validity of the typed system [39]. General-purpose program-

ming languages often support restriction-based derived types, such as subtyping in object-oriented

languages; composition-based derived types, such as type unions, are less commonly supported9. De-

rived types may be defined separately in type documents (for example, XML Schema) or directly in

the system definition itself (for example, Java classes and interfaces).

One technology for representing type systems in XML documents is XML Schema [298]. XML

Schema allows the formal definition of the syntax and semantics of a type system, which will be used

to construct and verify instances of XML documents. This includes the definition of derived types

based on existing types in XML Schema. For example, an email datatype can be naïvely defined as

the composition of two strings, identifier and host; i.e., identifer@host10.

XML Schema also defines the XML Schema Datatypes recommendation, which provides a hi-

erarchy of built-in datatypes and derived datatypes through restrictions such as range bounding and

regular expressions. This includes the definition of a ur-type, which is a built-in datatype with “an

unconstrained lexical space, and a value space consisting of the union of the value spaces of all the

built-in primitive datatypes” (and their subsequent lists) [298]. The hierarchy of these datatypes is

illustrated here in Figure 4.11.

TODO Jens feedback: could also briefly discuss OWL here

4.5.3 Type Systems in the Model-Driven Architecture

Type systems can also be integrated into the metamodelling architecture of the MDA, as introduced

earlier in Section 3.1.5. The integration of type systems into the MDA specifically is not discussed in

any existing standard, but it is fairly straightforward to adapt the metamodelling architecture of XML

Schema Structure [298] and XML Schema Datatypes [299] in this way. The resulting architecture is

summarised in Figure 4.12.

In this architecture, a custom schema is placed in the metamodel layer (M2), and instances of this

schema are placed in the model layer (M1). The real world objects that the schema instance represents

remain in M0. Importantly, the XML Schema datatypes are also part of the metamodel layer (M2),

because the custom schema can refer to these datatypes. Custom datatypes as defined by the schema

are also placed in M2. This is because these datatypes can be considered the metamodel for the actual

datatype instances in M1.

The concept of modelling spaces [69] as discussed earlier in Section 3.1.6 can be applied to sim-

plify the complexity of this architecture, and to aid in its comprehension. This allows the metamod-

elling architecture to be split into the two modelling spaces of a Structure Space and a Datatype Space,

as illustrated in Figure 4.12. It is important to note that the definition of XML Schema datatypes may

simultaneously reside in both M2 and M3 at the same time. Djurić et al. [69] argue that this is accept-

able according to the model-driven architecture.

9One notable exception is the Web Ontology Language (OWL).
10The definition of a valid e-mail address is much more complex according to RFC 5322 [251], as discussed later in

Section 5.4.2.
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Figure 4.11: Built-in datatype hierarchy of XML Schema Datatypes, adapted from W3C Group

[299]

4.6 Domain Modelling

The range of data and datatypes used in a web application is rarely limited to primitive types, such as

strings and integers. Depending on the web application, the domain of the web application needs to

be modelled in terms of the data necessary to model the application. For example, a shopping web

application will likely need to model domain concepts such as products, taxes, and so on.

The modelling of these domain-specific data structures is known as domain modelling, which often

involves the extension and composition of primitive types. The definition of a particular structure is

known as a schema or domain schema, and is often conceptually separate from the method necessary

to access or modify a particular instance of the schema. Instances of schemas can be stored using

a variety of technologies, such as relational databases, object-oriented databases, or other structured

storage methods11. In this section, a variety of techniques for modelling domain schemas will be

briefly discussed.

11Non-relational databases, known as NoSQL, falls under the “structured storage” category [181].
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Figure 4.12: Representing XSD Schema Datatypes within the metamodelling architecture of

MDA using modelling spaces

4.6.1 ER Diagrams

Entity-Relationship (ER) diagrams can be used to model relationships between entities; these diagrams

were originally proposed by Chen [46] for the design of relational database systems, and have been

extended by others [247, pg. 307]. For example, Figure 4.13 shows a system where a Car has a

relationship to a Manufacturer through the relationship builds. The relationship edge arrowheads

illustrate the modality and cardinality between the relationships.

ER diagrams cannot model the structure of the entities themselves; that is, ER diagrams cannot

show that a Car has a colour. In this case, a data object table or schema is often also supplied to

complete the model [247]. This data object table is also illustrated in Figure 4.13.

Because ER diagrams only illustrate the relationships between entities, they are good at giving an

overall understanding of a system. However, the relationship edge arrowheads can be confusing to

Figure 4.13: A sample ER Diagram and Data Object Table, adapted from Pressman [247]
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Figure 4.14: A sample UML class diagram [227]

people without experience in the ER modelling field, making ER diagrams unsuitable for communi-

cation with non-technical stakeholders. Finally, unlike the other three technologies discussed in this

section, ER diagrams do not support the concept of subtyping or type inheritance.

4.6.2 UML Class Diagrams

UML class diagrams [227] include both the entity relationship modelling of ER diagrams and the

schema definition of data object tables. For example, Figure 4.14 models the same Car/Manufacturer

system as the combined ER/data object table example in Figure 4.13. Modelling the structure is

optional, and this can simplify the diagram into a format similar to ER diagrams. Because UML class

diagrams use text (e.g. “1..*”) instead of line edges to mark modality and cardinality, these diagrams

can be easier for non-technical stakeholders to understand.

UML class diagrams are also much better suited for modelling object-oriented software systems

than ER diagrams, as they support type system concepts such as abstract classes, interfaces and type

inheritance. UML class diagrams can also support more advanced types of relationships, such as

aggregation, association and composition.

4.6.3 XML Schema

As discussed earlier, XML Schema [298] can be used to define derived datatypes through the composi-

tion, restriction or extension of other datatypes. XML Schema can also be used for domain modelling

by defining complex types, by defining each entity as an element associated with a complexType

representing the entity’s schema.

However, XML Schema cannot directly model the constraints necessary to match the UML class

diagram in Figure 4.14; in particular, it seems difficult (if not impossible) to enforce that both ends of

the relationship are correct12. It is also difficult to enforce cardinality constraints based on primary or

foreign keys; in some situations, this can be achieved by adding regular expressions to the attributes.

An XML Schema is therefore not suitable for domain modelling except in the simplest of circum-

stances due to its lack of expressiveness. However, it still remains suitable as a first step for validating

model instances represented in XML, if the model instance is loaded using a schema-validating XML

parser [298].

12That is, a car’s manufacturer must also have the same car listed in the list of cars it has manufactured; this constraint

could not be expressed in Figure 4.14.



4.7 Design Patterns for Data Access 73

Figure 4.15: The Database Broker design pattern represented as a UML sequence diagram,

adapted from Bennett et al. [23, pg. 469]

4.6.4 EMF Ecore

As discussed in greater detail later in Section 6.2.1, the Eclipse Modeling Framework (EMF) may be

used to define metamodels for model-driven approaches [279]. The underlying meta-metamodel for

EMF metamodels is the Ecore metamodel, which is defined in terms of itself. This self-definition

allows for Ecore to reside at the M3 layer of the metamodelling architecture of MDA. As discussed

earlier in Section 3.1.5, the Eclipse Modeling Framework was built on EMOF [?] and model instances

can be serialised directly to EMOF [279, pg. 40].

One issue with the Ecore metamodel is that it only permits a single attribute on a given EClass

to be the ID for the EClass; that is, it is not possible to define the concept of a multi-valued primary

key, which is a common scenario for relational databases used in the web application domain. This

problem is discussed in further detail later in Section 5.5.2.

4.7 Design Patterns for Data Access

In the previous section, three modelling technologies for describing domain schemas have been de-

scribed; however, none of these technologies specify how domain data may be accessed as part of a

modelled application. Design patterns formally document a solution to a common design problem in

a technology-independent way [105]. In this section, the common design patterns of Database Broker

and Iterator will be briefly discussed in terms of UML diagrams.

4.7.1 Database Broker

Bennett et al. [23, pg. 469–474] propose the Database Broker design pattern as one form of data

access, using a TBroker intermediary class which retrieves and stores instances of a particular class T.

This data access pattern is illustrated by the sequence diagram in Figure 4.15. Bennett et al. use class

inheritance on the abstract supertype TBroker to define how the data instances are stored; for example,

the broker may be defined by the subtype RelationalBroker of the in order to access a relational

database.



74 4 Rich Internet Application Modelling Concepts

Figure 4.16: The Iterator design pattern adapted to specify parameterised types, adapted from

Gamma et al. [105] and using a UML class diagram syntax [227]

Because the Database Broker can abstract away from the underlying representation of the data

storage (e.g. relational database, in memory, etc.), a broker can simplify the maintainability of the

system, because different storage representations can be used transparently. However, if a Database

Broker can only return one instance from a select, it is necessary to execute many queries to retrieve

multiple instances. If a broker can return a list of elements instead, it is easier to retrieve multiple

instances, but simply returning a list of elements can be detrimental if there may be many results.

4.7.2 Iterator

The Iterator design pattern “provides a way to access the elements of an aggergate object sequentially

without exposing its underlying representation” [105, pg. 257–271]. That is, an Iterator can be used

to access a source of data without needing to understand its storage representation, whether it is a

relational database or simply in memory. The Iterator design pattern is illustrated here in Figure 4.16.

The standard Iterator design pattern does not specify that a given Iterator can be applied to many

different types, such as through parameterised types13. In Figure 4.16, these parameterised types have

been added to the standard Iterator design pattern, represented here using the UML syntax of template

parameters [227, pg. 633].

Both the Iterator and Database Broker design patterns include instances of the Abstract Factory

design pattern [105, pg. 258], which can improve the maintainability of the designed system as the

underlying source of the data can be abstracted away. The current state of the Iterator may be stored

as a cursor to permit the same access algorithm to be used across different sources of data [105, pg.

261]. Importantly, an Iterator design pattern may also improve the scalability of the system; because

an Iterator can fetch results “on-the-fly”, computationally expensive methods can be deferred until the

result is actually necessary [66].

One drawback of the Iterator design pattern is that each Iterator may keep a connection open to

the original source of the data until the Iterator is finished or destroyed; in web applications, this is

particularly important if the original source is a database. In this case, it is important to mark the

13In the Java language, this is known as generic types [37].
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Iterator as closable, and the application can close the Iterator as necessary to release resources back to

the system.

4.8 Users and Security

As discussed earlier in Section 2.3.1, a user represents both people and non-human entities that need

to access a particular web application, and it would be beneficial to support user modelling in a RIA

modelling language. User modelling is very closely related to security modelling, as user authentica-

tion often requires both authorisation and authentication.

There are many different techniques and methods for describing secure systems, and for describing

the role of users in such a system. Depending on the scope and requirements of the modelled system,

the security model can either be very simple, or very detailed. In this section, a number of existing

access control methods will be discussed; however, a full discussion on the security properties of each

of the following systems is well outside the scope of this thesis.

Because security is generally an overarching property of the system, the complexity management

techniques discussed earlier in Section 4.1 may be applied to security modelling. For example, aspect-

oriented modelling can be used to define system security separately from system functionality; UWE

uses this approach to model access control in web applications by using UML state machines [326].

As Ceri et al. [44] discuss, although some user information is generic – for example, most web

application users have an e-mail address and a password – other information is domain-specific. A

modelling language for web applications therefore needs to support profile modelling for specific

domains, whilst still supporting common user modelling scenarios. In many ways, user modelling can

be considered a form of domain modelling, and this concept is discussed further in Section 5.9.1.

4.8.1 Access Control Lists

An Access Control List (ACL) is perhaps one of the simplest forms of user security in computing, and

is extended in many of the approaches discussed in this chapter. ACLs allow an object to be associated

with a list of permissions against particular users and groups. When the object needs to be accessed

securely by a client, the client is evaluated against the list of permissions provided by the ACL in order

to evaluate its current permissions.

Traditional Unix permissions are a simple form of ACLs applied to filesystems, where every

filesystem object is provided with three permissions (read, write, and execute) for three types of users

(owner, owner’s group, and other users). Unix permissions are widely used in computing and in the

deployment of web applications. However, Unix permissions can become too simple and limiting

when different objects regularly need to be shared with specific people. Since permissions cannot be

assigned per-user but only per-group, providing the same permission to two users involves the creation

of an entirely new group.

4.8.2 Discretionary Access Control

Discretionary Access Control (DAC) policies are based on individual users, and on access rules stating

what permissions each user possesses [260]. Every user in the system has a set of permissions against

every object in the system, and this set may be empty. These rules are often represented using access
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File 1 File 2 File 3 Program 1

Ann own read execute

read write

write

Bob read read

write

Carl read execute

read

Table 4.4: Example of an Access Matrix, adapted from Samarati and di Vemercati [260]

matrices as in Table 4.4, but as the matrix is usually sparse, policies are often implemented using

ACLs instead [120].

As secure systems often deal with large numbers of both users and objects, DAC policies can

quickly become overwhelming. Without a concept of roles or groups, it can be difficult to accurately

apply new permissions or objects to a common group of users. However since permissions are defined

explicitly and per-user, it is not possible to override any of these permissions from elsewhere in the

system, improving the inherent security of the approach.

4.8.3 Mandatory Access Control

Mandatory Access Control (MAC) policies are based on mandated regulations, determined by a cen-

tral authority [260]. Groenewegen and Visser [120] explain how this policy can be implemented on

assigning labels (e.g. TopSecret, Secret, Unclassified) to objects, and users are given a clearance label

that indicates their access level. The relative importance between labels is defined by a partial order,

and users can only create objects at a level they can access. The central authority regulations are then

used to determine access permissions for a particular user against a particular object.

As Groenewegen and Visser argue [120], MAC policies are mainly aimed at preserving confiden-

tiality of information, by preventing the unsafe transfer of information contained within objects to

other security labels. The use of a MAC-based system is made easier if labels can override lower-level

labels, but the resulting partial order between labels can cause problems if label order is not evaluated

as a whole.

4.8.4 Role-based Access Control

The Role-Based Access Control model (RBAC), as described by Sandhu et al. [261] and proposed as

a NIST standard [83], allows a great deal of flexibility in defining access and permissions. RBAC

is essentially an extension of ACLs with the concepts of roles, in order to support the large-scale

management of permissions and roles. A set of roles are defined, and each role provides particular

permissions; these roles can then be globally applied to individual users, or temporarily applied within

a session.

Compared with RBAC, MAC does not support individual permissions, however both supports a

partial ordering on a hierarchy of roles. Samarati and di Vimercati [260] argue that as RBAC is more

expressive, it is attracting increasing attention as an alternative security model to the traditional DAC

and MAC models. Groenewegen and Visser [120] argue that the main benefits of the RBAC model

include that role assignments are separated from users and permissions; many applications naturally
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consist of a hierarchy of roles; and a user can activate the minimum role able to perform a task,

increasing security.

4.9 Describing Reusable Patterns within a Metamodel

When designing many different systems within a particular domain, there are often a number of com-

mon patterns of functionality that emerge. As an example in the RIA domain, it is a common re-

quirement to keep the values of two objects synchronised; for example, keeping a form on the client

synchronised with its stored representation on a server14. A RIA modelling language could therefore

provide some way of reusing these common patterns, named reusable patterns in this thesis15.

4.9.1 Independence of the Reusable Pattern Metamodel

One option for modelling reusable patterns is to integrate the patterns directly into the same meta-

model; for example, a Text Field could have a reference “synchronised with”, which references an-

other Text Field in the model. This approach is useful if there is a predetermined set of potential

patterns; however, as supported patterns are directly encoded into the metamodel, it would be difficult

for a third party to create new patterns, as the metamodel must be modified directly.

Alternatively, these patterns could be supported using aspect-oriented modelling, discussed earlier

in Section ??. Here, pattern instances are defined as an instance of an entirely separate metamodel

(a “patterns” metamodel), separating the additional functionality of the patterns from the base model

itself. With this approach, it is easy for third parties to extend or create new patterns using this

approach, and the set of available patterns does not need to be restricted.

4.9.2 Implementation of the Reusable Pattern Metamodel

Once a metamodel can support the instantiation of common reusable patterns as part of a model

instance, it is also necessary to describe how the pattern will actually be implemented. With respect to

the “synchronised with” reference discussed above, this would involve the creation of methods, events

and any other related functionality necessary to implement the intent of the reusable pattern.

One option would be to implement the reusable pattern logic as part of the model transformation

– or code generation – process of the metamodel. This would mean that the reusable pattern must be

integrated into the model transformation, making it difficult for third parties to extend these patterns,

or to create new patterns. This approach would also make it difficult for a model developer to override

the functionality of a reusable pattern, as the pattern has essentially become an intent of the metamodel

itself.

Alternatively, if the source metamodel already supports the manual definition of the reusable pat-

tern, then model completion could be used to implement the reusable pattern within the same model

instance. This approach leaves the model transformation stage intact, as it moves the pattern logic

into the model completion stage, as discussed in Section 3.2. This can also be considered a form of

aspect-oriented modelling as the reusable pattern logic is removed from both the metamodel and the

implementation into a separate completion process.

14This design pattern is described as a Sync Wire later in Section 5.8.1.
15This nomenclature is provided to distinguish these types of patterns from the concept of architectural software design

patterns as discussed by Gamma et al. [105].



78 4 Rich Internet Application Modelling Concepts

Both of these approaches could be simplified by using additional abstraction layers in the lan-

guage implementation. That is, an intermediary metamodel can be used to make the source and target

metamodels smaller, at the expense of additional steps in the modelling environment. As discussed

earlier in Section 2.4.3 this is the approach taken by UWE, where each metamodel instance represents

a particular aspect of the intended design [170].

If both the design and implementation of reusable pattern modelling support is achieved in an

aspect-oriented modelling way, then the reusable pattern could be removed entirely from the base

metamodel and considered an independent extension. The benefit of this approach is that the meta-

model and model transformations are not polluted by a range of reusable patterns, and would also

improve third-party interaction. However, the drawbacks of aspect-oriented modelling as discussed

earlier – such as understanding the interaction between two aspects – remains a concern.

4.10 Visual Notation

The development of visual representations for modelling languages is a very large research area, and

is not the main focus of this research; a full discussion on the existing research into visual notations is

therefore well outside the scope of this thesis. However, this research will perform a preliminary evalu-

ation onto the efficiency and suitability of using a visual representation for a RIA modelling language.

This section will summarise three evaluation concepts relating to the design of visual languages.

4.10.1 Notation Information Capacity

To evaluate the effectiveness of a visual notation, Moody [211] proposes measuring cognitive effec-

tiveness through the systematic evaluation of a number of notation variables. By measuring these

variables in a quantitative way, the effectiveness of two similar visual notations can be effectively

compared, and this section will discuss two of these approaches.

The first approach – ontological analysis – measures the effectiveness of mapping the visual no-

tation to the underlying model instance. In particular, four detrimental anomalies are identified, with

respect to a desirable one-to-one mapping between constructs and notation [211, pg. 759]:

1. Construct deficit, a model concept does not have a corresponding visual notation;

2. Construct redundancy, multiple visual notations can represent a single model concept;

3. Construct overload, a visual notation can represent multiple model concepts; and

4. Construct excess, a visual notation does not represent any model concepts.

The second approach focuses on measuring the information capacity of a visual element with

respect to a number of different visual variables, each of which have a particular information capacity.

For example, Moody argues that we can distinguish between an unlimited number of element shapes,

but we can only distinguish between a few element textures. The capacity of various visual variables

as discussed by Moody are illustrated in Table 4.5; in particular, power represents the highest level of

measurement that can be encoded, and capacity represents the number of perceptible steps.
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Variable Power Capacity

Horizontal position (x) Interval 10–15

Vertical position (y) Interval 10–15

Size Interval 20

Brightness Ordinal 6–7

Colour Nominal 7–10

Texture Nominal 2–5

Shape Nominal Unlimited

Orientation Nominal 4

Table 4.5: Information encoding capacity of different visual variables, adapted from Moody

[211, pg. 770]

4.10.2 Cognitive Dimensions Framework

The cognitive dimensions framework proposed by Green and Petre [118] defines thirteen dimensions

for the subjective evaluation of user interfaces. This framework may be used to evaluate the usability

of visual modelling languages, as illustrated by Grundy et al. [123] in their evaluation of the View

Mapping Language (VML).

A summary of these thirteen dimensions, along with the evaluation of these dimensions against

a proposed visual representation for modelling RIAs, is provided in Appendix K. As discussed by

Green and Petre [118], no given notation can satisfy all of these dimensions simultaneously; designers

must understand the trade-offs between these dimensions in order to select the best compromise for a

given visual notation.

4.10.3 Graphical Language Guidelines

Rumbaugh [259] proposes a list of twelve guidelines for the development of graphical modelling

languages. A visual notation cannot satisfy these particular guidelines in a way that can be measured

quantitatively, as earlier in this section. Nevertheless, some of these guidelines – such as “must fax

and copy well using monochrome images” and “easy to draw by hand” – are still useful to consider

when designing a visual notation.

Many of the guidelines proposed by Rumbaugh can be measured in terms of the guidelines pro-

posed by Moody [211]. For example, Rumbaugh’s “no overloading of symbols” guideline can be

considered equivalent with Moody’s guideline of construct overload; and “uniform mapping” equiv-

alent to Moody’s ontological analysis goal of having a one-to-one mapping between concepts and

constructs [211].

4.11 Conclusion

The development of a modelling language for RIAs requires support for modelling many domain

concepts – such as events, types and lifecycles – and each of these modelling concepts may be im-

plemented using a number of existing approaches. In this chapter, a variety of approaches for each

of these modelling concepts have been evaluated and discussed, along with comparisons to existing

work where relevant. In the next chapter, these design concepts will be integrated into a new modelling

language for RIAs.





Chapter 5

The Internet Application Modelling

Language

This chapter will provide the definition of the Internet Application Modelling Language (IAML),

a modelling language for Rich Internet Applications. It will informally discuss the design and be-

havioural aspects of the language, the rationale behind each design decision, and illustrate examples

of the visual representation of the language. The complete definition of IAML, including the syntax,

inference rules and implementation guidelines for each language element is provided in Appendix ??.

Throughout this chapter excerpts of an example web application, Ticketiaml, will be provided to

illustrate the use of certain IAML metamodel elements. As described later, this application is the

IAML-based implementation of the Ticket 2.0 benchmarking application, and its full definition is

provided later in Appendix J.

5.1 Development Approach

Earlier in Chapter 2, we discussed the requirements of RIA modelling languages and how no existing

language could completely model all of the features of RIAs. In this section, we will now fully define

the scope for this research, and define the approach that will be taken in the development of our

language, which will be called the Internet Application Modelling Language to reflect the intended

final scope of the language.

5.1.1 Requirements Planning

Once the requirements for a RIA modelling language had been identified earlier in Section 2.3.2,

it became clear that the resources necessary to implement such a language together with a proof-

of-concept implementation far exceeded the resources available in a single Ph.D. The target set of

requirements will therefore be simplified to a smaller set by omitting rarely-used features of RIAs.

After investigating our list of 59 modelling requirements, we found that some of these require-

ments could be characterised as describing the system complexity, distributed functionality, reliability

and performance requirements of enterprise-level applications. These requirements were focused on

describing large RIAs, rather than the features that made RIAs considerably different from other web

applications. By removing these requirements, RIAs may be classified into two types based on their

characteristics: Full RIAs and Basic RIAs.
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Category Requirements

Offline data D7, D8

Server transactions E9, E10

Multiple interfaces U1, U9

Plugins and dynamic scripting A6, A8, A9

Internationalisation T4

Multiple domain support T5

User collaboration E7

Import external libraries U11

Table 5.1: Additional Requirements for Full RIAs

The requirements set of a Basic RIA can be used to describe and construct the vast majority of Rich

Internet Applications on the Internet, such as simple mashups, personal web sites, and small online

shopping sites. Larger enterprise-level applications such as web-based e-mail and social networking

platforms can instead be described as a Full RIA. A Full RIA has the modelling requirements of a

Basic RIA with the additional thirteen requirements in Table 5.1; this reduces the feature scope for

modelling Basic RIAs to a more reasonable 46 requirements (a 22% decrease).

This requirements restriction is not detrimental to the overall contributions of this thesis; as dis-

cussed earlier in Wright and Dietrich [323], no existing approach can model either Basic or Full RIAs,

so the proposal and implementation of a modelling language for Basic RIAs will still be a significant

research contribution. Nevertheless the language will be designed to support Full RIAs in the future

where possible, to allow the implementation of these missing requirements as future work.

5.1.2 Modelling Language Development Approach

As discussed earlier in Section 2.7, there are three methods of developing a language: the extension, or

restriction of an existing language; or an abstraction into a new language. The approach taken depends

on how well existing languages match our intended domain. However, since no existing language

maps well onto RIA concepts, and many RIA concepts do not easily map into existing languages such

as UML, the extension or restriction of an existing language is not a desirable approach.

This research proposes abstracting existing RIA platforms into a new domain-specific language,

but also reusing concepts and semantics from established languages. This approach is advocated by

Kelly and Pohjonen [159], who argue that it is a good idea to reuse basic ideas and concepts such as

data flow, control flow and type inheritance in the development of new modelling languages.

For example, UML defines UML class diagrams [227] which are generally accepted by industry

and extensively used to model the schema and structure of object-oriented systems [23]. The concepts

and semantics of UML class diagrams could therefore be reused and adapted to modelling schemas

or objects within RIAs, without the language being burdened by having to implement the entire UML

specification1 .

1TODO: Could mention how UML is trying to focus on developing a smaller kernel UML, simplifying implementation

– or simply discuss other existing metamodel kernels.
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Figure 5.1: The hybrid modelling language process model used in the development of IAML

5.1.3 Software Process Model

This research will attempt to capture the benefits of both the linear sequential and evolutionary soft-

ware process models, discussed earlier in Section 2.7.2. Since neither approach is purely suitable for

research as discussed earlier, a hybrid approach may be beneficial, as illustrated in Figure 5.1. This

approach is very similar to the MDA software development process advocated by Kleppe et al. [165].

The only difference is that as a research project, the analysis and design is done in a sequential manner.

In this hybrid approach, the requirements capture and analysis and design steps will be performed

sequentially, to ensure that all of the desired requirements will be captured. This hybrid approach

also includes the development of a proof-of-concept implementation of the language; as discussed

earlier in Section 2.3.1, this implementation can be used as a reference implementation, and increase

acceptance of the language within development communities [90].

The development, implementation and validation steps will be performed iteratively and in an

evolutionary manner. This will ensure that this research will at the very least result in a fully validated

partial language, rather than a complete language that cannot be fully validated. To improve the quality

and reliability of the software implementation, some of the concepts of test-driven development, as

discussed earlier in Section 2.7.3, will also be incorporated into the implementation process.

5.1.4 Evaluation

As discussed earlier in Section 1.3, the research method underlying this thesis proposes a number of

methods in which to evaluate the proposed modelling language. In Chapter 8, five different evaluations

will be performed:

1. Feature Comparison Evaluation: Earlier in Section 2.4.7, a feature comparison was performed

to compare existing modelling languages for web applications against RIA features described

in Wright and Dietrich [323]. These requirements will therefore be re-evaluated against the

completed IAML metamodel, to compare the functionality of the proposed IAML metamodel

with these existing languages.
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2. Modelling Requirements Evaluation: The list of detailed modelling requirements for RIAs

[322], discussed earlier in Section 2.3.2, will be evaluated against the proposed language in

a requirement-matching evaluation. This comparison will identify any language requirements

of Basic RIAs that are not yet supported.

3. Benchmarking Application Evaluation: The implementation of the proposed RIA benchmark-

ing application, Ticket 2.0 [322], will be used to illustrate that the language can be used to

implement real-world applications, and that the modelling language is not excessively complex.

In order to highlight any differences in development effort, the system metrics defined earlier

in Section 2.6.3 will be used to compare the IAML-based implementation with the manually

implemented benchmark.

4. Metamodelling Metrics Evaluation: The evaluation of the metamodelling metrics defined earlier

in Section 2.6.2 will be used to compare the IAML metamodel with other similar metamodels,

illustrating if the complexity of the metamodel could be considered unexpected.

5. Visual Notation Evaluation: The syntax and implementation of the visual notation of IAML

model instances will be evaluated using two approaches discussed in Section 4.10. That is, the

syntax will be compared by evaluating the information capacity of its notation, discussed by

Moody [211]; and the implementation will be evaluated using the cognitive dimensions frame-

work, discussed by Green and Petre [118].

5.1.5 Design Goals

In order to clarify the intent of the proposed modelling language and to improve understanding of the

necessary decisions that will be made during its design, it will be helpful to summarise the design

goals of this new language as follows:

1. The IAML metamodel will fully support the 46 requirements of Basic RIAs, with consider-

ation also given to the additional thirteen requirements of Full RIAs, as discussed earlier in

Section 5.1.1. This design goal is evaluated later in Section 8.2.

2. IAML will reuse concepts from existing modelling languages where appropriate, as discussed

earlier in Section 5.1.2. This design goal is evaluated later in Section 8.1.

3. IAML will be supported with a visual notation to improve the end-user effectiveness of design-

ing model instances, as discussed earlier in Section 3.3. The implementation of this design goal

is covered later in Sections 5.14 and 7.4.3.

4. The proof-of-concept implementation of IAML will be implemented iteratively in an evolution-

ary manner, and the metamodel will be frequently refactored as appropriate, as discussed earlier

in Section 5.1.3. This implementation is introduced in greater depth in Chapter 7.

5. IAML and its proof-of-concept implementation will be published under an open source license

to encourage use within industry, seek community feedback and to reduce defects, as discussed

earlier in Section 2.7.4. This design goal is discussed in greater depth later in Section 7.1.1.

6. During its development, IAML will be frequently evaluated according to the evaluation criteria

discussed earlier in Section 5.1.4, in order to guide its development in an evolutionary manner.

The results of these evaluations are provided later in Chapter 8.



5.2 Metamodel Design Principles 85

7. The implementation of IAML will be supported by a suite of model instance verification tools,

in order to aid in the development of correct web applications. This goal was discussed earlier

in Section 1.5, and evaluated later in Section 7.7.

5.2 Metamodel Design Principles

Before the IAML metamodel is discussed, it is important to identify the principles used to answer

design decisions that will arise during the development of the language, along with techniques for

evaluating these principles.

5.2.1 Language Design Principles

The principles of design for a modelling language can be adapted from the principles of designing pro-

gramming languages. For example, Hoare [138] introduces concepts such as simplicity and efficient

object code as general design criteria. On a more practical level, Wirth [319] discusses some of the de-

sign decisions that need to be considered, such that mathematical formalisms of basic abstractions may

identify inconsistencies2 , and a language is useless without an implementation and documentation.

Programming language design principles can be adapted to instruct the design of modelling lan-

guages; for example, Karsai et al. [157] proposes 26 guidelines on the design of domain-specific

languages. While it is desirable for a modelling language to satisfy all of these principles and guide-

lines, many of these principles conflict with each other [157]. For example, adding language concepts

to increase the functionality of a language directly conflicts with the principle of keeping a language

simple.

This thesis will select four design principles as particularly important to guide the design of the

IAML metamodel, with respect to the research questions proposed at the start of this thesis. In par-

ticular, IAML will be developed primarily according to the design principles of scalability, simplicity,

consistency and standards-compliance.

Scalability

As discussed by Paige et al. [237], “the principle of scalability states that a modelling language should

ideally be useful for both small and large systems.” This can be measured by evaluating the modelling

environment; for example, different views can be provided under the discretion of the model developer

that hide unnecessary detail. The design of IAML to support hierarchical model instances is one way

of satisfying this design principle, as discussed in Section 5.2.2.

Simplicity

Paige et al. describes a simple language as one that is “small and memorable” [237]. Karsai et

al. suggests many guidelines to achieve simplicity, such as limiting the number of language elements;

avoiding unnecessary generality; and avoiding conceptual redundancy [157]. One useful set of metrics

to evaluate simplicity should therefore be the metamodelling metrics discussed earlier in Section 2.6.2.

In general, a metamodel with a fewer number of model elements should be a simpler metamodel.

2Wirth also highlights how a balance must be achieved between formal and informal documentation; in particular, argu-

ing that a “formal definition cannot be a substitute for an informal presentations and for tutorial material” [319, pg. 29].
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Kelly and Pohjonen [159] also argue that developing a domain-specific approach is not about

achieving perfection, but about developing an approach that works in practice: “It will always be

possible to imagine a case that the language can’t handle.” They advocate concentrating on the core

concepts in a domain, and initially building a prototype language for these features. Even languages

such as UML are still undergoing evolution; at the time of writing, UML has been through 17 years

of iterative development3 .

Consistency

Paige et al. [237] describes the principle of consistency within modelling languages as that “there

is a purpose to the design of the language” and that all features of the language must support this

purpose, and this definition is used in this thesis. As the purpose of IAML is to support the design

and implementation of Rich Internet Applications, this means that every element within the language

must have an analogous component in the web application domain.

For example, web applications should not support the execution of arbitrary commands on the

server, as this presents security and scalability issues; IAML should therefore never include support

for such primitives. Similarly, IAML is purposed to design RIA functionality, and not on the layout of

user interfaces; IAML therefore delegates this responsibility to the CSS language [?].

The consistency of a modelling language must not be confused with the consistency of the model

instances produced using the language [237], which may be evaluated using model instance verifi-

cation as discussed earlier in Section 3.4. Similarly, modelling language consistency must not be

confused with the consistency of the textual or visual syntax of the language, which is covered earlier

as part of the cognitive dimensions framework in Section 4.10.2.

Finally, consistency can also be considered in terms of the high-level design of model instances,

which is also a different concept to modelling language consistency. Depending on the development

environment, design consistency can be addressed through naming patterns, coding conventions [?,

pg. 875–902] and reusing architectural design patterns [105].

Standards-compliance

Standards-compliance refers to the cooperation of the language elements to existing specifications and

standards, which should occur wherever possible either through composition or definition reuse [157].

This design principle is already reflected as a design goal of the language in Section 5.1.2. Importantly,

standards-compliance may be at odds with simplicity and consistency principles, and may impact on

proof-of-concept implementations; a metamodel which reused the entire UML metamodel would be

much difficult to implement than one which only reused the UML state diagram metamodel.

5.2.2 Hierarchical Modelling Approach

In terms of the three complexity management techniques discussed earlier in Section 4.1, the IAML

metamodel is designed to use a hierarchical modelling approach. Such an approach will allow model

developers to see a high-level overview of a modelled system, but also zoom into the individual details

of a particular model element. Each level of the hierarchy is designed to support a particular domain

scope, as illustrated in Figure 5.2.

3As discussed by [?], the development of UML began in late 1994.
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Figure 5.2: Hierarchical Modelling in IAML

It is important for each viewed layer to provide appropriate context to the model developer, to

orient the current view with the rest of the modelled system. In the IAML metamodel, it is envisaged

that the proof-of-concept implementation can be used to provide this context. Hierarchical modelling

is also very easy to integrate into the model completion framework, discussed earlier in Section 3.2.

A benefit of using a hierarchical modelling approach for modelling RIAs is that it becomes pos-

sible to use many visual metaphors at once. For example, the overview of a web application may use

a deployment diagram metaphor; individual parts of the application may use a navigation metaphor;

and the contents of methods may use an activity diagram metaphor4. This technique is used by UML;

for example, an overview of a system can be visualised using a deployment diagram; this diagram can

be decomposed into class diagrams; and individual methods of a given class can be decomposed into

activity diagrams.

5.2.3 Guidelines for Metamodel Refactoring

During the development of a modelling language, a number of architectural decisions on the meta-

model itself will arise. For example, a set of elements could be refactored into a single element with

an enumerated property; conversely, a single element with an enumerated property could be split into

a set of related elements.

During the development process of the metamodel for IAML, there were no known guidelines for

when to apply such metamodel refactorings. This may be due to the fact that modelling language

development is a relatively recent area, and such guidelines often come from experience in the de-

velopment of modelling languages. However, two guidelines will be proposed that were obtained by

adapting existing refactoring guidelines to the metamodelling domain.

Extracting Supertypes

If a set of related elements all have common functionality, then the common functionality can be

extracted into a supertype for these elements. For example, Buttons and Input Text Fields both

represent user interface elements that need to be rendered in some fashion; it may be preferable to

let these metamodel elements inherit this “renderable” functionality, to improve component reuse

4TODO: How does UWE use different visual metaphors?
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and simplify the metamodel development. However, it is important to note that such a metamodel

refactoring will increase the number of classes in the metamodel, impacting the simplicity language

design principle discussed earlier.

In the design of the IAML metamodel, this refactoring was encouraged according to the “three

strikes and you refactor” guideline proposed by Fowler [88, pg. 57]; that is, once three metamodel

elements share the same common functionality, this functionality can be extracted into a supertype.

In terms of the previous example, this involved the creation of a Visible Thing supertype as discussed

later in Section 5.12.2.

Merging Elements

This metamodel refactoring process is almost the converse of the extracting supertypes process. In

this case, if a set of related elements all have the same supertype and there is very little different

functionality between each type, then these subtypes can be merged together into a single type, and

the differences in functionality represented using an attribute or a property. The number of elements

in the metamodel can therefore be reduced, satisfying the language design principle of simplicity, and

reducing the mental load on the developer.

However, a merged element is much more difficult for a third party to extend in commonly-

available typed systems, as most object-oriented language supports object inheritance through third

parties, yet few languages support direct manipulation of an object property. It is also important that

the property-based distinction be easily visible, otherwise design-time errors may occur. Finally, any

constraints on the original elements must be merged in a consistent way, impacting the simplicity of

constraints.

This implies that related elements may be implemented in two conflicting ways. The following

guidelines were consequently used in the refactoring process of the IAML metamodel:

1. Is it likely that the original supertype will be extended by a third party? If so, the supertypes

should be kept.

2. Are there significant differences in the individual implementations of each supertype? If so, the

supertypes should be kept, as many model transformation frameworks provide better support for

exploring inheritance than exploring enumerations of properties, as discussed later in Section ??.

3. Otherwise, the supertypes should be merged together into a parent type, and a new enumerated

property should be provided to select between predefined behaviours, as previously permitted

by the subtypes.

5.2.4 Package Overview

One design principle of the UML metamodel was to architect the metamodel using packages, in order

to encourage modularity [226, pg. 11]; This approach has also been followed in the design of the IAML

metamodel. An overview of the IAML metamodel packages and their dependencies is illustrated as a

UML package diagram here in Figure 5.3.

In this figure, each package is annotated with the number of classes defined within that package
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Figure 5.3: Dependencies between packages of related model elements within the IAML meta-

model

as described in this chapter5. These packages are architectured in a independently layered fashion to

improve the design of the language; this package diagram can be reinterpreted as a layered architecture

diagram illustrated in Figure 5.4.

In this package diagram, the Core package is implicitly referenced by most of the other packages

in the IAML metamodel, and forms the architectural kernel [226, pg. 12]. The remaining sections of

this chapter will discuss the contents of each package in the IAML metamodel.

5.3 Metamodel Core

With the overall design principles of the modelling language discussed, the remainder of this chapter

will focus on the metamodel structure of IAML, and on discussing the rationale behind the design

decisions involved. In particular, each of the design concepts discussed earlier in Chapter 4 will be

explored and implemented as part of the IAML metamodel.

The Core package forms the architectural kernel of the IAML metamodel in terms of its basic

constructs – such as Predicates, Conditions, Events and Actions – and is therefore the most critical.

5While the proof-of-concept implementation of IAML uses EMF packages, these do not yet correspond to the packages

described in this chapter. This package refactoring process represents future work, as discussed in Issue 281: Refactor model

elements into documented packages.

http://code.google.com/p/iaml/issues/detail?id=281
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Figure 5.4: Layered architecture diagram illustrating the layered design of packages within the

IAML metamodel

The description of this package will be split into five aspects: the underlying logic model; the function

model; the event-condition-action model; the wires model; and a constructs model which unifies these

separate models.

5.3.1 Logic Model

As discussed by Wirth [319], it is desirable to describe core concepts – such as conditions, operations,

functions and values – on a rigorous mathematical definition, to provide a strong foundation for the

rest of the language. The core of the IAML metamodel is therefore closely related to first-order logic

[86], with a partial syntax provided here in Figure 5.5. The elements in this syntax are then mapped to

IAML model elements according to the mapping in Table 5.2; the resulting structure of the core logic

metamodel is introduced in Figure 5.66.

The fundamental building blocks of IAML logic elements are Functions and Parameter Values,

which are associated through an instance of a Complex Term. A Function defines a function signature;

a sequence of slots, each with a name and type, and the Function itself has a name and type. A

Complex Term associates a Function with a set of Parameter Values, using the Parameter named

association class7.

When a Complex Term is referenced, each incoming Parameter Value to the Complex Term

instance is bound according to the name of the associating Parameter, to the named slots of the

Function. This creates variable bindings; that is, the value of a Parameter named x is bound to the

6OCL constraints defined throughout this chapter are implemented in the Model Verification with OCL component,

discussed later in Section 7.7.2.
7A named association class is preferable over an ordered association relationship, as discussed later in Section 5.3.1.
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Sentence → AtomicSentence | ConnectiveSentence

ConnectiveSentence → Sentence Connective Sentence

AtomicSentence → Predicate (Term+)

Term → Constant | Variable | ComplexTerm

ComplexTerm → Function (Term+)

Connective → ∨ | ∧ | ⊕

Predicate → ¬ | = | . . .

Function → + | − | concat | . . .

Figure 5.5: A partial syntax of first-order logic, adapted from Fitting [86]

FOL Concept IAML Model Element

Sentence Condition

AtomicSentence Simple Condition

ConnectiveSentence Complex Condition

Connective AND | OR | XOR

Predicate Predicate

Term Parameter Value

Constant Value

Variable (not supported)

ComplexTerm Complex Term

Function Function

Table 5.2: Associations between first-order logic elements and IAML elements

slot x of the Function of the Complex Term. An OCL constraint is provided to ensure that all slots

of a Function are provided with exactly one matching named Parameter Value. The evaluation of

a Function will return a new typed value according to the semantics of the given Function and the

respective incoming bound variables.

The fundamentals of logic can then be built from these basic elements. A Predicate is a Function

that always returns a boolean, as discussed earlier in Section 4.3.3. Similarly, a Condition is the

instantiation of a Predicate with a set of Parameter Values, mirroring the Complex Term concept;

consequently, a Condition can be defined as a Complex Term using a Predicate.

To support the definition of ConnectiveSentences – that is, a Sentence connected using Connec-

tives, such as ∨, ∧ and ⊕ – the concept of a Condition is split into Simple Conditions and Complex

Conditions. Boolean functions such as negation and equality are implemented as Functions; for ex-

ample, negation is provided by the XQuery function fn:not which accepts a single boolean-typed

argument [307]8.

Variables are not currently supported in IAML – that is, these logic constructs only provide terms.

Support for variables would require some method to define how to select elements within a model,

and also some method to define how the selection process may access the model instance. This could

be implemented using the XPath language [305] to select elements from the Document Object Model

(DOM) of the model instance [296]. Because Variables are not supported in the logic metamodel of

8An example model illustrating the use of negation is provided later in Figure 5.23.
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Figure 5.6: UML class diagram for the Core Package: Logic Model

IAML, quantifiers such as ∀ and ∃ are also not supported910.

Named Parameters

One important question is on the design of parameters used in Complex Terms within the metamodel.

One option is to create a simple association between the Complex Term and Parameter Value elements

and label it as an “{ordered}” association [227, pg. 42]. That is, the relations are defined using

positional arguments rather than slotted arguments [?]. However, such an approach directly impacts

on the usability of the resulting model instance development environment.

In particular, this means that developers must always be mindful of the order of the arguments,

and arranging the order of elements by accident may introduce significant problems that cannot be

checked at design time. Named parameters rather ensure that serialisation order does not matter, and

missing parameters can easily be detected.

Parameters are therefore designed as an explicit association class [227, pg. 46–48], with each

parameter named; conversely, each Function defines a set of slot names. The association ends for the

9TODO: Jens feedback: This might also restrict event modelling. Events don’t support properties; may be a consequence

of not having variables. Restrictions in event handling.
10TODO: Giovanni feedback: Are variables needed? If not, a brief explanation.
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Figure 5.7: UML class diagram for the Core Package: Function Model

named parameters must also explicitly be non-unique, to allow for situations where a Complex Term

uses the same Parameter Value for more than one slot; for example, the expression 5+ 5 uses the

same Value instance twice within a single Complex Term instance.

5.3.2 Function Model

The Function metamodel element is extended to introduce two new model elements – Boolean Prop-

erty and Builtin Property – to simplify the development of the remainder of the IAML metamodel, as

illustrated in Figure 5.7. The intent of these extensions is to permit model objects to contain Predicates

specific to the instance of the model element. For example, a Domain Iterator contains the Predicate

“empty”, and the value of this predicate is unique to each iterator instance.

This may be achieved by providing the instance as an positional argument to the Predicate, such

as f (C,a0, ...,an) where C represents the container. Within object-oriented languages, this syntax is

deprecated in favour of C. f (a0, ...,an) to highlight that the container owns the particular function or

method through its type11. This latter approach is used for IAML to define a Boolean Property, which

is a Predicate using its container as an implicit slot with a predefined value.

Model element instances may be contained by other model element instances, and this relationship

is defined as a containment reference. This reference may be defined explicitly, however to simplify

the design of the metamodel, it is instead desirable to specify that all model elements have an implicit

11As discussed by [?, pg. 447], this syntax represents a qualified procedure call and rules that the function f must be

available to the class C.
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container relationship as an opposite to every containment reference. This is identical to the seman-

tics of the eContainer method specified by the Eclipse Modeling Framework [279, pg. 31–32]. This

container relationship is not explicitly modelled in the class diagrams throughout this chapter.

On the slot types of Functions

In the version of first-order logic used within this thesis, a Function has no restriction on the acceptable

types of terms. A Function can therefore operate on anything within the defined universe12.

However, in an EMF-based implementation of a modelling language, the definition of an EClass

must explicitly state a type for each of its references, even if that type is to the generic EObject type.

That is, the slot types must each be typed in the metamodel design. The question thus becomes one

on the selection of the most appropriate type for Function terms.

With respect to the concepts of first-order logic, a Function can only be applied to two types of

source data within the model – primitive types in the form of XSD Simple Types, and complex types

in the form of Domain Types – as discussed later in Section ??. A number of options for the type of

slot types were considered:

1. The type of slot types could be defined as the union of XSD Simple Types and Domain Types.

However, Ecore does not support the concept of type unions in references.

2. A reimplementation of XSD within EMF would allow the definition of a new common ancestor

between XSD Simple Types and Domain Types i.e. the type of slot types would be a new inter-

face IAML Type, with both XSD Simple Type and Domain Type implementing this interface.

However, this represents additional implementation complexity and effort, and any updates to

XSD would need to be propagated to the IAML implementation.

3. Remove the concept of Domain Types, and only allow XSD Types, which includes both XSD

Simple Types and XSD Complex Types; i.e. the type of slot types would be the abstract XSD

Type. The drawbacks of this approach are discussed later in Section 5.5.2; in particular, XML

Schemas do not support the definition of operations, conditions or events on complex types.

4. Retain the concept of Domain Types, but specify that Domain Types are an extension of XSD

Complex Types; i.e. the type of slot types would be the abstract XSD Type. This approach

is also discussed later in Section 5.5.2; in particular, the complexity of XSD Complex Types

would not easily map to relational databases – a fundamental target platform for this research13.

While EMF does not support the concept of type unions, this design can be emulated using OCL

constraints on the metamodel. The reference type of slot types is therefore defined to be EClass,

which is the only common ancestor of IAML model elements and XSD types, as discussed later in

Section 7.2. This specification is subsequently constrained to only be an instance of XSD Simple Type

or Domain Type using OCL constraints, as illustrated in Figure 5.6. It is not desirable to leave the

type open to only EClass, as this would support higher-order logic14.

12Functions can also accept other Functions as terms, however this represents a higher level of logic [198] than first-order

logic, which is outside the scope of this thesis.
13Use Case 1: View Data.
14For example, a Function with an instance of the slot types reference typed to Function.
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Figure 5.8: UML class diagram for the Core Package: Event-Condition-Action Model

5.3.3 Event-Condition-Action Model

Events are placed within the Core package of the metamodel as they are considered a fundamental

aspect of RIAs within this thesis. While considering the evaluation of existing approaches to the visual

modelling of events earlier in Section 4.2, the corresponding metamodel for ECA rules is illustrated

in Figure 5.8. In particular, an ECA Rule states that an Event will execute a particular Action when

the event is triggered, optionally constrained by the Conditions on the rule itself.

Corresponding instances of ECA rules may be represented visually as in Figure 5.9, illustrating

an instance of an ECA Rule within the Ticketiaml application; here the visual notation for a UML

SendSignalAction [227] is used to represent the Event. This rule is triggered by the onAccess Event of

the containing Label (as defined later in Section 5.6.3), and a Parameter named “message” is provided

to the target Operation.

It is not possible for a model developer to directly define their own domain-specific events in

IAML, because the definition of an event also requires the definition of the semantics of when the

event would be triggered. This would therefore require the definition of an event modelling language,

which is outside the scope of this research.

Actions

In IAML, the UML concept of an Activity is reused as the Action abstract metamodel element; that is,

a “specification of parameterized behaviour” which may contain actions of various kinds [227]. An

ECA Rule may be provided a set of named Parameters, which will be passed along to the Action; for
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... > Frame: ’login’ > Label: ’message’

onAccess

onAccess

: Event

Container: message

initialise or hide message label

: ActivityOperation

Container: message

message

: QueryParameter

run

: ECARule

message

: Parameter

Figure 5.9: Ticketiaml: An ECA Rule connecting an Event to an Operation

example, as parameters to an Operation, as discussed later in Section C.2.

IAML does not use UML’s Action element, as an Action can only be used and executed within a

single Activity. It would be more desirable to be able to execute an action from many different contexts,

which an Activity permits. However, IAML retains the name “Action”, to match the Event-Condition-

Action paradigm. All actions are contained directly by a target element, which can be referenced by

the action itself through the implicit container relationship. Events are contained by a source element,

and this is the element that triggers the event itself. More information on this technique is discussed

in Section 7.4.4.

5.3.4 An example decomposition of a Simple Condition

To illustrate the mechanism by which a Simple Condition – a Complex Term – evaluates the instances

of its provided Parameters, the following simple conditional expression will be decomposed as an

example:

gig.minAge.value > textfield.value

This expression is given in a pseudo-textual format, and ‘>’ represents the XQuery comparison

function op:numeric-greater-than [307]. The subsequent decomposition of this expression is

illustrated here in Figures 5.10 and 5.11. (The design rationale behind domain modelling types such

as Domain Instances is discussed later in Section 5.5.)

The syntax used in Figure 5.1015 is based on the UML syntax for defining instances of classes, as

illustrated in the UML infrastructure specification [226, pg. 201]. Since the IAML metamodel is de-

fined in terms of standard classes and not stereotypes [227, pg. 670], the notation for UML stereotypes

should not be used. Generally, the metaclass of elements in UML model instances are distinguished

based on their visual notation, and not with the metaclass name; however in this situation, explicitly

displaying the metaclass will improve the understandability of the following decompositions.

15TODO: Should containment references be explicitly annotated as such?
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Figure 5.10: The Simple Condition decomposition of a single predicate using variables and

domain types as terms, represented in terms of UML syntax

minAge

: DomainAttributeInstance

Type: xsd:integer

Container: gig

a < b

: XQueryFunction

Container: Root

textfield

: InputTextField

Type: xsd:integer

Container: Home

c1

: SimpleConditiona

: Parameter

b

: Parameter

Figure 5.11: The model developer view of the Simple Condition decomposition from Fig-

ure 5.10, represented using IAML visual notation
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Figure 5.12: VisualAge for Smalltalk: Using Connections

The full decomposition as in Figure 5.10 is not normally provided to the developer, as this syntax

is very complex. The complexity of this representation is expected, and would parallel the alternative

decomposition of the textual expression into an abstract syntax tree. The representation provided to

the model developer is illustrated instead in Figure 5.11.

In this model developer view, some model elements (such as Simple Conditions and Parameters)

are reduced to edges; most of the model element attributes are moved into a separate properties view;

and some referenced elements are removed entirely (such as the Domain Type and Domain Attribute

of the first Parameter instance). A full discussion of the visual representation of IAML model in-

stances is provided later in Section 7.4.

5.3.5 Wires Model

In order to support the inclusion of common reusable patterns in a modelling language for RIAs,

IAML proposes the concept of a Wire as an abstract connection that represents additional function-

ality. Wires are inspired by the connection concept in VisualAge for Smalltalk [186]. VisualAge for

Smalltalk supports a visual rapid application development approach, as in Figure 5.12; here, a simple

application consisting of two text fields and a button are defined. The two text fields are associated with

a connection, connecting the value property of each text field. When executed, the running application

automatically keeps the two text fields synchronised.

Wires are implemented using model completion as discussed earlier in Section 4.9.1, which allows

for the reusable pattern logic to be executed independent of the underlying metamodel implementation.

Each reusable pattern instance is represented as a subtype of Wire, and the range of Wires subtypes

within IAML are discussed later in Section 5.8. This infrastructure forms part of the Core package of

the IAML metamodel as illustrated in Figure 5.13.

5.3.6 Constructs Model

The final aspect of the Core package of the IAML metamodel is the definition of the Changeable and

Accessible interfaces, as illustrated in Figure 5.14. These interfaces are used to simplify the design of

other IAML metamodel elements by providing a common infrastructure.

The Changeable interface is used to define a model element which has a single Value named field

value. To simplify the development of model instances, Changeable is specified as a subtype of Value

as a form of syntactic sugar. This means that Changeable elements may be used directly as Parameters

in Complex Terms, and the element itself becomes an alias for the contained field value.

In order to support one of the use cases of model completion – that it should be possible for a
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Figure 5.13: UML class diagram for the Core Package: Wires Model

model developer to complete an intended model, and then later remove these generated elements16 –

the abstract class Generated Element is also defined in Figure 5.14. All elements within the IAML

metamodel should be subtypes of this abstract class to enable these use cases; the meaning of these

attributes are discussed later in Section ??.

Figure 5.14 also introduces the use of the «multiple» stereotype to simplify the UML class di-

agrams throughout this thesis. A «multiple» stereotype on an association is an alias for multiple

identical associations on the two participating model elements, each with the same multiplicities for

each association end, but with different association names as listed on the alias association. For model

elements with multiple associations between the same element types – for example, the many Boolean

Properties defined for a Domain Iterator later in Figure 5.20 – this stereotype significantly simplifies

the resulting UML class diagram.

5.4 Type System

With respect to the type systems described earlier in Section 4.5, the IAML type system is designed

to be statically checked [39]; Values can only ever have a single type17. Statically checked languages

are often easier to verify using verification technologies, and this is one of the design goals of IAML.

However, the type system is also weakly checked [39]; a type instance can be implicitly translated

into another type instance if necessary through a cast, as discussed later in this section. A weakly-

checked language may simplify model instance development, as type instances do not need to be

explicitly translated. However weak typing can hinder the verification of system correctness, unless

these implicit casts are well-documented.

5.4.1 Primitive Types

As discussed earlier in Section 4.5.2, XML Schema [298] provides a framework of builtin datatypes

and a framework for the definition of derived datatypes. Primitive datatypes in IAML are therefore

16The implementation of this use case is described in further detail later in Section 7.8.
17It is important to note that a statically checked type system does not prevent types from having many supertypes through

a subtype relation [39].
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Figure 5.14: UML class diagram for the Core Package: Constructs Model

based on the existing XML Schema datatypes [299], satisfying the design goal of reusing existing

standards where possible. IAML can also support the definition of new simple types through the

restriction or extension of existing datatypes, according to the XML Schema specifications. IAML

does not explicitly support XML Schema complex types, as discussed later in Section 5.5.2.

The Eclipse Modeling Framework also provides its own datatype definitions – such as the datatypes

EString and EInt – and reusing these definitions was considered. However, EMF datatypes must be

implemented with Java methods such as convertXXXToString() and createXXXFromString()

[279, pg. 390–391], whereas XSD datatypes are defined using a platform-independent formal seman-

tics [299]. This would mean that any EMF-based custom types would need to be implemented in Java,

reducing the platform-independence of IAML.

Primitive Type Systems in the Model-Driven Architecture

The primitive type systems architecture discussed earlier in Section 4.5.3 may be used to understand

the role of these primitive types within a model-driven architecture. The primitive type system design

of IAML is illustrated here in Figure 5.15; this architecture shows how predefined, built-in and custom

datatypes (and their instances) interact with type definition references in the same model instances.

Within IAML, the suite of predefined datatypes are obtained directly from the XML Schema

Datatypes definition [299], as supplied through the org.eclipse.xsdplugin developed by the Eclipse

Foundation18. These predefined datatypes are extended to supply built-in datatypes such as iamlE-

mail, as discussed in the next section. Finally, developers may introduce their own custom datatypes

18The EXSD Data Type metamodel element is necessary to bridge this gap between XSD and IAML.



5.4 Type System 101

Figure 5.15: Adapting the metamodelling architecture of MDA to the use of primitive type

systems

into the environment, which represents the definition of a new metamodel element within the M2 layer.

Comparison to MOF

The architecture of the IAML type system was partially inspired by the semantic domain model for

constructs defined in the MOF [224, pg. 53–64]. This domain model was not used directly in the

IAML metamodel as this domain model was deemed too complex for defining primitive types, with

respect to the desire to reuse first-order logic within the metamodel core.

In particular, the IAML type system does not define metamodel elements for structural associa-

tions, instance slots19, value specifications or structural features. However, the reuse of the EMOF-

compatible Ecore metamodel [?], as discussed later in Section 5.5, does define associations and struc-

tural features within the scope of domain modelling.

Casting

Casting refers to the conversion of one instance of a datatype to another value of a different datatype.

Ideally, a cast will not result in loss of precision (for example, an integer into a real number), but there

are situations where a loss of precision cannot always be prevented (for example, a real number into

an integer) In the latter case, the magnitude of precision loss is dependent on the original value; a cast

without any loss of precision is deemed a successful cast within IAML.

19The MOF definition of a Slot is different from the definition of a slot in the IAML metamodel, as highlighted by its

metamodel specification [224, pg. 54]. That is, a MOF Slot is owned by an InstanceSpecification, whereas an IAML slot is

owned by a Function, as discussed earlier in Section 5.3.1.
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Source Type

Target Type string int dateTime email default type

string X X X X X

int ? X ? 7 ?

dateTime ? X X 7 ?

email ? 7 7 X ?

default type X X X X X

Table 5.3: A selection of complete, conditional and unavailable datatype casts in IAML

The implementation of every primitive type in IAML must also implement a method to evaluate

whether a particular instance of the type may be successfully cast into an instance of string, and

whether a particular instance of type string may be successfully cast into an instance of that given

type. A selection of these conditional casts with respect to certain XSD datatypes are illustrated here

in Table 5.320; these casts are separated into the three categories of successful (X), where the cast is

guaranteed to be successful; conditional (?), where the success of the cast is dependent on the runtime

value of the instance; and unavailable (7), where the cast is guaranteed to be unsuccessful for all

values.

XML Schema defines how one instance of a given datatype may be converted into a different

datatype, by defining the lexical space of a datatype [299]. Alternatively, when a datatype is being

used with an XPath query [305], the conversion is defined as part of the constructor function of the

particular target type21 [307]. Within IAML, the casting semantics of the latter process are used to

cast XSD datatype instances.

5.4.2 Additional Built-in Primitive Types

While XML Schema provides a wide range of built-in datatypes, these do not include datatypes com-

mon to the web application domain. For example, e-mail addresses and URLs are both common

elements of data within Rich Internet Applications, but these datatypes are not supported natively in

the XML Schema definitions. These common datatypes are therefore included as built-in primitive

datatypes in the implementation of IAML, and some of these types will be briefly discussed in this

section.

Default Type

IAML supports the concept of a “default type”, which represents an untyped value; in some languages,

this is also known as an Any type. Following the design of the type system as a weakly-checked

language, such a value instance must first be cast to a specific value before it can be used in a typed

scenario; this is in contrast to languages such as PHP, where the type of a value is determined at

runtime depending on the context of its use [?].

All datatypes must also support the serialisation of instances into the default type (and this serial-

isation often follows the same semantics as casting to string). In particular, IAML requires that all

20In this table, email refers to the IAML-defined iamlEmail type introduced in the next section, as XML Schema does

not define an “email” datatype.
21For example, the process of converting the string instance “3” into an integer instance would be expressed in XPath

as xs:unsignedInt("3").
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type instances must be serialisable into a string-based format without a loss in precision.

iamlEmail

This datatype represents an e-mail address, such as the value “jevon@openiaml.org”. However, the

complete definition of an e-mail address in RFC 5322 [251] is very difficult to implement in terms of

a regular expression [?]. RFC 5322 allows arbitrary labels and whitespace throughout a valid e-mail

address, vastly increasing the complexity of any regular expression.

iamlURL

This datatype22 represents instances of Uniform Resource Locators (URLs) [26], such as the value

“http://openiaml.org/model#InternetApplication”. XML Schema already defines a datatype

for URIs (anyURI), but does not define URLs, which are a subset of URIs. A separate URL datatype

is necessary in order to represent locations on the Internet; URIs, on the other hand, can represent

content such as text strings or ISBN codes.

iamlOpenIDURL

The iamlOpenIDURL datatype represents a validated OpenID URL; that is, in order to be a valid

instance, it must be both a valid URL, and has been validated using the OpenID protocol [250]. Con-

sequently, the validity of its string representation can change over time; if a value is cast to a string

instance and then back to an iamlOpenIDURL instance, the user may need to re-authenticate with

their identity provider. The full rationale behind this datatype and its semantics, such as how a valid

instance may lose its validity if cast, is discussed later in Section 5.9.4.

Proposed Datatypes

A number of other builtin datatypes have been considered, but yet have not been defined in IAML.

The investigation and implementation of the following datatypes remains future work:

• iamlPassword, representing a password. By explicitly typing value instances as passwords,

we can execute additional verification checks (e.g. never display a iamlPassword in clear text)

and improve security (e.g. all iamlPassword instances must be stored through a hash function)

as default properties of RIAs.

• iamlFile, representing a file. By providing a built-in datatype for files a developer would not

need to conceptualise files differently from any other representation of data. This type could

be further restricted, e.g. to only text files, binary files, and so on. A built-in datatype would

also improve the platform-independence of such a RIA model, as files could be stored using a

number of technologies depending on the scenario23.

• iamlImage, representing an image, and could be a restriction on iamlFile. Such a datatype

would therefore introduce similar advantages to those gained in defining the iamlFile datatype.

22Issue 269: Implement iamlURL builtin datatype.
23For example, files can be stored directly on the file system, or within relational databases, or distributed globally as

part of a content distribution network; each of these approaches have various benefits and disadvantages, as discussed by

Eichinger [77].

mailto:jevon@openiaml.org
http://openiaml.org/model#InternetApplication
http://code.google.com/p/iaml/issues/detail?id=269
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• iamlIdentity, representing a user identity along with the mechanism that may be used to

verify a users’ identity. For example, this could be an instance of an iamlOpenIDURL as verified

through OpenID [250], or an e-mail address used by Microsoft Passport. This proposed datatype

is discussed in further detail later in Section 5.9.4.

5.4.3 Value Instances

Now that the underlying type system of IAML has been defined, it is necessary to describe how

instances of these types can be defined, created, modified and used. A Value represents an instance of

a particular type within a particular scope, and the value of this instance may change over time.

If an instance of a Valuemodel element is contained by a Scope (as discussed later in Section 5.10),

then at runtime there will be many different instances of this single Value, and each instance will

exclusively belong to a single instance of each unique Scope instance at runtime. The accessibility of

a particular Value instance is dictated by the containing scope of the Value, a property calculated in

the following manner:

• If the Value is contained within an Operation, then the containing scope of that value is the

containing scope of the Operation’s container.

• If the Value is contained within a Scope, then the value instance is unique to that Scope. For

example, a Value contained within a Session can only have one instance of that Value per Session

instance, and instances of that Value cannot be accessed by other instances of the same Session

scope.

• Finally, if the Value is not stored within a Scope, then the value instance is available globally

according to the root Internet Application. Only one instance of the Value can ever exist.

Values are used in the composition of complex objects. For example, a Input Text Field also

possesses the values field value, default value and current input. These values can be referenced and

modified directly, however it is often more desirable to use an associated Operation such as update (as

discussed in Section ??). Model instance developers can also define their own Values within almost

any other model element instance.

While the default value of a Value only supports the string representation of the instance value, it

may be desirable in the future to support more complex method of defining default values. Expression

languages such as XQuery [306] or OCL [225] could be used to define values based on the DOM of

the underlying model instance.

On merging model elements representing value instances

The four model elements of Value, Query Parameter (discussed later in Section 5.10.5), Activity

Parameter and Temporary Variable (both discussed later in Section 5.7) are all concerned with the

storage of value instances. As per the metamodelling design discussion of Section 5.2.3, it may be

beneficial to merge these elements together into a single element to reduce the size and complexity of

the IAML metamodel.

It would be undesirable to merge the Value and Query Parameter model elements together, as it

is unlikely that a model developer would wish to change the storage semantics of a Value element to

those of a Query Parameter. Allowing instances of Value to be set externally by the client via the
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request URL may also introduce a security problem. Similarly, a Parameter can only be set via an

ECA Rule, whereas a Value can be set using any mechanism, which may similarly introduce a security

problem.

The key difference between Value and Temporary Variable instances are the semantics of where

the element may be accessed, and how long data persists within that instance. It may be desirable in

the future to merge these two elements together, by introducing a new attribute for Value that defines

the persistence of data; however, this attribute could conflict with the semantics of the containing

scope property.

5.4.4 Client-side Input Validation

Because all client-side elements such as Input Text Fields have an associated type, IAML can auto-

matically implement some client-side input validation. For example, consider an application model

that specifies a Frame containing an iamlEmail-typed Input Text Field; if at runtime a user enters in

an invalid e-mail address into this field, the application can automatically highlight the invalid field,

and inform the user that the value is invalid. This free client-side input validation logic is provided

through the model completion framework. For certain visual elements, the onInput Event may also

permit validation to occur simultaneously while the user is entering in data, corresponding to the

classical input validation use case24 of RIAs [323].

5.5 Domain Modelling

As the primitive type system has now been defined, these definitions can be used in the composition

of complex types to support domain modelling, discussed earlier in Section 4.6. In this thesis, domain

modelling is split into two related concepts: the definition of domain modelling schemas, expressed as

Domain Types; and the access of instances of these domain schemas, expressed as Domain Iterators.

5.5.1 Domain Types

The IAML domain metamodel, used to define the structure and attributes of these domain-specific

complex types, is adapted from the Ecore metamodel [279]. As illustrated here in Figure 5.16, this

metamodel replicates the structure of the Ecore metamodel, but this duplication is necessary in order

for these metamodel elements to also subtype the Generated Element abstract class, necessary to

support model completion.

Domain Type

A Domain Type may compose many primitively-typed instances of data into an overall complex

type. Each primitively-typed instance of data is represented as a Domain Attribute contained by a

particular Domain Type. Instances of a particular type may also reference other types; this reference

is represented as a Domain Reference.

Domain Types may subtype others to support a simple implementation of multiple inheritance;

multiple inheritance is necessary to support Roles as discussed later in Section 5.9. The IAML meta-

model reuses the supertypes property of EClass in order to define these subtype relations, expressed

as instances of Extends Edge.

24Use Case 19: Asynchronous Form Validation.
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Figure 5.16: UML class diagram for the Domain package of IAML

Domain Feature

As discussed earlier, one of the fundamental target platforms25 of IAML is relational databases, where

complex types are represented as tables, and relationships between table instances represented as

foreign keys. Relational tables also often have uniquely-identifying attributes collated into a primary

key [23, pg. 456–457]; these primary keys are essential for association tables.

This is at odds with the Ecore definition of an EClass, where only a single EAttribute may be

uniquely identifying, as specified by the ID of the EAttribute [279]. Consequently it is necessary

to also define a boolean primary key attribute on Domain Feature, representing that this attribute or

reference may be combined with other attributes into a primary key within a relational database. If a

Domain Type does not define any primary key, then by default model completion will insert in a new

integer-typed Domain Attribute as a primary key.

Domain Type Example

Since a Domain Type simply consists of a set of Domain Attributes, the corresponding visual repre-

sentation is fairly simple. In Figure 5.17, the eight Domain Attributes used to define an Event Domain

Type within Ticketiaml is represented; this includes the integer-typed ID attribute, string-typed

title and description attributes, and iamlDateType-typed date attributes.

5.5.2 Design Decisions on Modelling Domain Schemas

Reusing Existing Type Systems

Similarly to the reasoning behind the design of the primitive type section, it is necessary to decide

whether a new complex type system should be designed or if an existing complex type system can be

25Use Case 1: View Data.
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InternetApplication: ’Ticket 2.0’ > DomainType: ’Event’

venue

: DomainAttribute

Type: builtin:iamlAddress

Container: Event

title

: DomainAttribute

Type: xsd:string

Container: Event

description

: DomainAttribute

Type: xsd:string

Container: Event

created

: DomainAttribute

Type: builtin:iamlDateTime

Container: Event

updated

: DomainAttribute

Type: builtin:iamlDateTime

Container: Event

tickets_left

: DomainAttribute

Type: xsd:integer

Container: Event

event_date

: DomainAttribute

Type: builtin:iamlDateTime

Container: Event

id

: DomainAttribute

Type: xsd:integer

Container: Event

Figure 5.17: Ticketiaml: The defined Domain Attributes of the Domain Type Event

reused. As discussed in Section 4.6, four existing metamodels were considered: ER models, UML

classes, XML Schemas, or EMF models.

As discussed earlier in Section 4.6.1, ER diagrams are not suitable for modelling complex types in

IAML as the language does not support the concept of type inheritance, which is necessary to model

users as discussed later in Section 5.9. The initial definition of ER diagrams [46] did not explicitly

label relationship cardinality, object composition, or the direction of relationships; later extensions to

ER diagrams included these concepts [247]. Finally, ER diagrams also require the use of the Data

Object Tables model to define the inner attributes of classes, adding further complexity to a model

instance.

Alternatively, a Domain Type could be defined as an extension of a XSD Complex Type, providing

a complete implementation of XML Schemas within IAML. However, instances of XSD Complex

Type can represent arbitrarily deep trees and sequences of complex data. Without arbitrarily restricting

the depth of children permitted in complex types, implementing this functionality using relational

database concepts – a fundamental target platform of this research26 – would be difficult27.

The UML class diagram supports complex type definitions through UML elements such as Classi-

fier and Property. However, the infrastructure behind UML classes are very complex; the latest UML

specification [227] comprised of 55 separate model element types for class diagrams, including ele-

ments such as Slot, OpaqueExpression and BehavioredClassifier, negatively impacting the simplicity

language design principle of IAML. Furthermore, there is no standard implementation or defined se-

mantics of UML class diagrams, and a model developer could not rely on any form of interoperability

between existing models.

The Ecore metamodel of EMF represents the best choice for modelling complex types in IAML

when considering these alternative approaches. At 17 elements, the Ecore metamodel uses much fewer

model element types than UML classes; there is a well-defined sample implementation of Ecore meta-

model instances [279]; and this implementation has been ported to other platforms such as C++ [113].

Nevertheless, some Ecore element types such as EDataType and EGenericType are not necessary for

the IAML metamodel, so these element types will not be supported within IAML; as discussed earlier,

the underlying primitive type system of IAML uses XML Schema datatypes [299].

26Use Case 1: View Data.
27For example, consider a single complex type which defines a Company to contains many Persons, each with their own

Address complex type. At what point should these inner types be serialised to separate tables?
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Figure 5.18: If domain types are defined using metamodelling, the resulting models are incom-

patible in terms of the MDA metamodelling architecture

Defining Domain Types using Metamodelling

Since the model of a domain type can be considered the definition of a metamodel for instances of that

type, one can reasonably consider that the definition of domain types should reside within a separate

metamodel, which is then used as the metamodel of a model instance. This scenario is illustrated in

Figure 5.18, where the complex domain type Gig and an associated instance my gig is defined with a

hypothetical domain modelling metamodel.

However, this approach does not satisfy the metamodelling architecture of the MDA discussed

earlier in Section 3.1.5. If the metamodel layers are added to Figure 5.18, the IAML metamodel def-

inition must reside on M3. Since IAML is defined in terms of the M3-compatible Ecore metamodel,

and not in terms of itself, this situation would violate the conditions of an M3 layer – the metamod-

elling architecture of MDA does not support any M4 layer.

In UML, the approach taken is to define an InstanceSpecification type, which has a classifier refer-

ence to a Classifier instance, as illustrated in the UML infrastructure [226, pg. 54]. Both InstanceSpec-

ification and Classifier reside within the same metamodel, meaning both domain types and instances

of the domain types must reside within the same model instance. The IAML metamodel follows this

approach as illustrated in Figure 5.19, and this design is compliant according to the metamodelling

architecture of the MDA.

It is still possible to separate the concepts of domain types and domain type instances by separating

the models into layers. This approach would be beneficial if the metamodel for domain modelling

already exists as an independent metamodel, such as XML Schema or UML class diagrams; or if the

domain type instances subsequently defined needed to be reused in model instances outside of RIAs.

Implementing Multiple Inheritance

As discussed by [?, pg. 519–568], multiple inheritance is theoretically favourable for object-oriented

systems, as real-world objects can simultaneously be many types of common things. The main chal-
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Figure 5.19: Defining instances using references instead of instantiation is MDA-compatible

lenge is in its implementation – for example, reliably permitting developer access to identically-named

attributes derived through multiple inheritance. It is therefore important to consider how a multiple

inheritance system within IAML may be implemented.

It is possible to decompose a multiple inheritance hierarchy into a system that only supports sin-

gle inheritance, increasing system complexity. As discussed by Crespo et al. [54], these techniques

include emancipation (all inheritance is flattened into a single monolithic class); composition (inher-

itance relationships are transformed into composition relationships); expansion (multiple inheritance

relationships are expanded into many single inheritance relationships); and using a variant type (all

inherited attributes are collated into a class which uses dispatch based on runtime type).

Both WebML, UML and UWE support single inheritance as part of their domain modelling ap-

proach; UML also supports multiple inheritance in UML class diagrams [23]. As UWE reuses much

of the UML approach, it seems that UWE can also support multiple inheritance, although multiple

inheritance is not considered in any existing work. WebML, on the other hand, only supports single

inheritance in defining database models28.

5.5.3 Domain Iterators

TODO Include a sample decomposition of domain attribute instances, similar to the composition

decomposition in Figure 5.10?

In order to support access to instances of Domain Types, IAML uses the Iterator design pattern

[105] discussed earlier in Section 4.7.2 as the structural basis for data access in the language. In

particular, all data access is provided through a Domain Iterator, which has explicit references to a

source of data (Domain Source) and a data schema (Domain Type). This structure is implemented

according to the package diagram illustrated here in Figure 5.2029.

28“Each entity is defined as the specialisation of at most one super-entity.” [43, pg. 66]
29Within the implementation of IAML, the select reference of a Domain Iterator is implemented as the Select Edge

model element. Similarly, the schema reference of a Domain Source is implemented as the Schema Edge model element.
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In order to access data, the Domain Iterator contains a single Domain Instance, representing the

current instance of the Domain Type of that iterator. This instance is subsequently composed of a

number of Domain Feature Instances, each representing the current value instance of each Domain

Feature within the specified Domain Type. As the iterator is evaluated, accessed and navigated, these

instances are populated with the values from the current instance pointer of the current result set. The

instance data within a particular Domain Iterator can be reloaded from the specified Domain Source

by calling the reload operation within that iterator. A full semantic description of the behaviour of

instances, iterators, their properties and operations is provided later in Section ??.

Instances of Domain Iterators are stored and accessible according to the containing scope of the

iterator itself in an identical fashion to the containing scope of Value instances, discussed earlier in

Section 5.4.3. For example, multiple Sessions can access the same Domain Source using the same

Domain Iterator, but as each session is unique, each session has a unique view over the domain source.

Domain Iterator Query

To access data from a particular data source, a query must be provided to select which data should be

retrieved. If no query is provided, then the iterator will simply return all available instances of that

type. An Domain Iterator query is provided as a single text string, but this does not prevent language

extensions from using alternative query definition methods such as graphical queries or filters. For

example, the query “name = :name” will select instances of a Domain Schema where the Domain

Attribute named name matches the value of the incoming Parameter named name.

One important aspect of SQL is that it only provides a limited range of SQL functions, and these

functions may not be provided by particular relational database implementations [166]. Each database

vendor also independently defines their own functions, and many common functions – such as MATCH,

which may be used to search against text patterns – are not defined in SQL99. Consequently, platform-

independent database access must be done through database abstraction layers, such as Propel or PDO

for PHP [243, 183].

IAML therefore defines its own query functions which are then translated into the function specific

for a particular database. These query functions are discussed later in the documentation of Domain

Iterator in Section ??.

Domain Source

A Domain Source defines the source of a particular Domain Type. In particular, it defines where the

data is stored; for example, if it is stored within a database, a file, or stored remotely (for example, an

RSS feed). Clients using a Domain Iterator do not need to know where the source data is stored or

accessed, or how it is saved.

Figure 5.21 illustrates a partial model used to define the Edit Event page of Ticketiaml. This

Domain Iterator will select a single instance of an Event Domain Type as specified through the

Domain Source connected to the iterator. This iterator uses a specific query, “id = :id” in order to

select a specific Event, and this value is provided as a Query to the iterator from an existing Value.

RSS Feeds

By default, a Domain Source is assumed to be a local database on the same server as the web ap-

plication. IAML also supports the use of an external RSS feed as the source of the Domain Type,
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Figure 5.20: UML class diagram for the Domain Instances package of IAML
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... > Session: ’Manager Session’ > Frame: ’Edit Event’

values

current id

: Value

Type: xsd:integer

Container: Edit Event

Edit Event

: InputForm

Container: Edit Event

selected event

: DomainIterator

id = :id

limit: 1

autosave: false

events.db

: DomainSource

Type: RELATIONAL_DB

id

: Parameter

sync

: SyncWire

: SelectEdge

Figure 5.21: Ticketiaml: Selecting an instance of the Event Domain Type through a Domain

Iterator connected to a Domain Source

as specified through the type attribute of the source. Such a feed will be will be cached locally and

periodically updated30. The feed can be manually updated using the reload operation, or it will be

updated automatically after a specified number of seconds (the cache attribute).

By default, a schema provided by an RSS domain source will automatically include the schema of

RSS [258] as its Domain Type. For example, the Domain Type will have the attributes title, link,

description, and so on; however, these attributes will only be provided at runtime if the particular

RSS feed provides them. It is up to the developer to keep these attributes synchronised with other

attributes in the schema, for example by using Sync Wires. This schema is included automatically

using the model completion framework31.

Failure Handler Rules

By associating an ECA Rule as a failure handler to a Domain Iterator, the failure handler will be used

to capture exceptions or problems during the evaluation of the iterator, preventing the exception from

otherwise crashing the application. This rule is specified as a failure handler by defining the name of

the rule to “fail”.

If an error occurs during the operation of a Domain Iterator – for example, the current instance

pointer is requested to go out of bounds, or the Domain Source is no longer available – then the failure

handler will be executed, according to the semantics of ECA Rule (Section 5.3.3). If the iterator does

not have a failure handler defined, then the failure handler semantics of the containing Scope are used

instead as discussed later in Section 5.10.3.

30The use of an RSS feed as a Domain Source of data must not be confused with providing an RSS feed through an

RSS-typed Frame, as discussed later in Section 5.12.4.
31Issue 218: Include RSS Type elements automatically in RSS Domain Sources.

http://code.google.com/p/iaml/issues/detail?id=218
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5.5.4 Domain Instances

A Domain Iterator contains a single Domain Instance representing the currently selected instance of

the Domain Type. Through model completion, this instance is consequently populated with Domain

Feature Instances corresponding to each Domain Feature defined within the selected Domain Type.

Each Domain Iterator has an associated current instance pointer, indicating the position or cursor

within the evaluated result set. This value can be accessed at runtime through the currentPointer

Value of the iterator.

A Domain Iterator also provides a number of operations and predicates to control navigation over

the result set, such as next, previous, hasNext, hasPrevious and so on. These methods may modify the

instance pointer, and are discussed in more detail later in Section ??.

This Domain Instance may then be connected to other model elements using concepts such as

Sync Wires and Set Wires, introduced later in Section 5.8; since a Domain Iterator may only ever

contain a single Domain Instance, these wires may also connect directly to the iterator itself, in order

to simplify development. This is illustrated earlier in Figure 5.21, where the selected Event is kept

synchronised with an Input Form, allowing the manager to edit the Event instance directly.

By default, a Domain Iterator only selects at most one result from the specified Domain Source.

The limit attribute can be used to select many results, rather than just one, making it a iterator over

multiple results. This resulting set of results can then be subsequently sorted using the orderBy refer-

ence. Modifying the limit of the iterator does not affect the Domain Instance within the iterator, but

restricts the maximum number of results that may be iterated over.

Modifying Domain Instances

A Domain Iterator can be used not only for reading from a domain source, but also to modify and

subsequently save changes to the domain data. Every Domain Attribute Instance contained within its

Domain Instance can be modified, and once the iterator is saved these changes will be written to the

original domain source. An iterator may also automatically save all changes by setting the autosave

property of the Domain Iterator to true.

However, some domain sources such as RSS feeds are read-only, and trying to modify such a

Domain Instance will result in an error. An application therefore should first evaluate the canSave

predicate of the iterator to check that the iterator can be successfully saved. Alternatively, the failure

handler discussed earlier can be used to handle these exceptions.

New Result Instances

A Domain Iterator may also be used to create new instances of a Domain Type within a particular

Domain Source, by setting the query of the iterator to “new”. If the autosave attribute of the iterator

is false, then this new instance will not be committed to the database until the save operation is

executed.

This approach is illustrated here in Figure 5.22, which is adapted from the Ticketiaml implemen-

tation of the Signup page. By connecting this Domain Iterator to a Signup Form via a Sync Wire, a

new user can create a new profile directly. As this Domain Iterator has its autosave attribute set to

false, the save operation must be called executed manually.
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... > Session: ’Signup Session’ > Frame: ’Signup’

Signup Form

: InputForm

Container: Signup

Create Account

: Button

Container: Signup

new user instance

: DomainIterator

new

limit: 1

autosave: false

users.db (named user)

: DomainSource

Type: RELATIONAL_DB

save

: BuiltinOperation

Container: new user instance

sync

: SyncWire

: SelectEdge

onClick

: ECARule

Figure 5.22: Ticketiaml: Creating a new instance of an Event using a Domain Iterator

5.5.5 Design Decisions on Modelling Domain Instances

Similarly to the design of Domain Types, a number of design decisions were considered during the

development of the Domain Iterator model elements, in particular with respect to the underlying

first-order logic model discussed earlier in Section 5.3.1.

Domain Attribute Instances should not be Complex Terms

A Domain Attribute Instance could be considered as a Complex Term; that is, a Function operating

on a Domain Instance that returns the current value of the given attribute. However, this is only true if

the value is read-only. Domain Attribute Instances can be modified, and can throw events when they

are modified. This conflicts with the meaning of a Function, as Functions must not change the state

of the system.

A Domain Instance may still provide both Domain Attribute Instances and corresponding Func-

tions for each attribute instance – in essence, providing two methods of accessing the same data in two

different contexts. However, this violates the principle of uniform access discussed by [?, pg. 57],

where there should be no distinction between a module’s services and its underlying implementation.

Attribute instances in Domain Instances are not directly Value instances

Domain Attribute Instances could also be considered as Values which is accessible and modifiable.

However, it is not desirable for these attribute instances to directly be instances of a Value, according

to the design philosophy of Value as described in Section 5.4.3; in particular, a Value cannot contain
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any operations, predicates or events, as a Value represents a Variable in first-order logic concepts. As

discussed earlier, each Domain Attribute Instance contains a save operation, a can save? predicate

and a onChange event, making it incompatible with the design philosophy of Value.

However, the IAML metamodel specifies that an Domain Attribute Instance is also an instance of

a Changeable in order to provide the onChange event to attribute instances. Due to the syntactic sugar

introduced in Section ?? which specifies that all Changeables can also be used as Values, this means

that a Domain Attribute Instance eventually inherits the Value abstract type.

Navigation through foreign keys of Domain Type instances

Currently in the IAML metamodel there is no way to navigate between Domain Type instances

through foreign keys, such as through instances of Domain References. This remains future work32,

and a number of potential modelling approaches have already been identified. For example, a Domain

Attribute Instance may define a Domain Instance for each domain object instance referenced via a

foreign key. Alternatively, a Domain Iterator could contain sub-iterators for each foreign key, which

could then be navigated normally.

Nevertheless, it is generally not desirable to support extensive foreign key navigation, if domain

modelling is considered in an object-oriented software development viewpoint. The Law of Demeter

[187] provides a guideline or heuristic for developing high-quality object-oriented programs; in par-

ticular, Lieberherr and Holland [187] suggest that objects should only have limited knowledge about

other objects, and knowledge should be restricted to “friends” of an object. Navigating over foreign

keys should therefore be the exception in an IAML model instance.

5.6 Events

The rationale behind the use of events as part of Event-Condition-Action modelling has been discussed

earlier in Section 5.3.3, as it forms an important part of the Core metamodel package. Events can also

be used to implement lifecycle modelling, as discussed later in Section 5.10. In this section, each

possible instance of an Event will be briefly introduced; for the full definition of their behaviours, the

interested reader is referred to the definition of Event in Section ??.

A triggered event does not have access to any information about the previous state of the triggering

or containing objects; this may be a consequence of not supporting free variables within the core

metamodel of IAML. For example, when an onChange event is triggered, it is not possible to access the

previous value of the changed field value. Similarly, when an onFailure event is triggered for an Email,

no failure message is available to the developer. This information has not proven necessary within the

current proof-of-concept implementation, but has been noted as an avenue of further research33.

5.6.1 onChange

The onChange event is intended to be fired when the field value of a modelled element changes. This

is particularly important for visual elements such as Input Text Fields, discussed later in Section 5.12;

in this case, the onChange event is fired when the control both loses the input focus and its contained

32Issue 228: Permit navigation through foreign keys of instances of Domain Types.
33Issue 198: Populate Events with event information when events are fired.

http://code.google.com/p/iaml/issues/detail?id=228
http://code.google.com/p/iaml/issues/detail?id=198
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field value has been modified since it gained focus. The event is derived from the DOM Level 2 change

event [295], and is also similar to JavaFX’s onReplace event [315].

5.6.2 onInput

The onInput event is similar to the onChange event, but is defined in order to support the richer

interfaces provided by RIAs. This event is fired whenever a user modifies the displayed value of the

displayed element on the client-side, but before it has been committed to the field value of the element.

However, if this event is triggered too frequently, the performance of the web application may

suffer. Consequently it is not guaranteed that the event will ever fire, or that it will fire regularly (for

example, upon every character keystroke) – but this is to guarantee the performance and usability

of the web application. This event may be buffered during periods of intense input or performance

reasons and to prevent excessive network requests.

5.6.3 onAccess

The onAccess event is defined for all Scopes and Accessible elements, and is triggered when the

Scope is accessed or the element is rendered34 , or. For example, a control contained within a Frame

will cause onAccess to be fired whenever the control is rendered on the frame.

When a Scope is accessed, the onAccess Event is triggered for its parent Scope before the event is

triggered for the current Scope, unless the current Scope has is the root Internet Application element.

This cannot be circumvented; it is therefore not possible to prevent the onAccess Event of the root

Internet Application from triggering. This allows parent Scopes to selectively prevent access to its

contained elements, as discussed later in Section 5.10, and is fundamental to the implementation of

Gates.

5.6.4 onInit

The onInit event is defined for all Scopes, and allows the scope to be initialised for the first time. It is

triggered when an instance of that Scope is initialised, and is guaranteed to trigger before the onAccess

event of the Scope is triggered.

Since onInit is only called when the scope is initialised, it is guaranteed that the root Internet

Application will only trigger its onInit event once throughout the lifecycle of the application. The

triggering of onInit events also follows a containment hierarchy identical to the triggering semantics

of onAccess events.

5.6.5 onClick

The onClick event is defined for all visual elements (see Section 5.12) to describe scenarios where the

user clicks a rendered element. This event is once again derived from the definition of the DOM Level

3 click event [296].

For composite visual elements, the click event will bubble up35 the containment hierarchy of Vis-

ible Things, as per the notion of DOM event bubbling discussed earlier in Section 4.2.6 [295]. For

34The onAccess event could therefore have been named onRender.
35Unlike the DOM definition, there is no way to cancel a bubbled event in IAML. Describing this scenario is future work,

but a workaround can be provided by using state variables and conditions.
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visual elements such as Buttons, onClick also covers the scenario where the button is clicked using

the Enter key, as this simulates a pointer click.

5.6.6 onSent

The onSent event is only defined for Email elements (discussed further in Section 5.11.1), and repre-

sents the successful delivery of a given e-mail. It is important to note that the onSent event does not

cover a successful receipt of an e-mail, but only a successfully delivery.

For example, if the e-mail is mistakenly deleted by an intermediary mail daemon, or later deleted

by a spam filter, this event may fire but the e-mail is still not received. If the e-mail is lost during

delivery, the onFailure event may be triggered in the future to signal a failed delivery; that is, an

onFailure event may occur after an onSent event.

It is not possible to guarantee that any given e-mail message has been successfully delivered and

received by a particular recipient. While Delivery Status Notifications (delivery receipts) [212] and

Message Disposition Notifications (read receipts) [130] can be used to verify a received email, not

all e-mail clients support this extension, and the user may disable these notifications for privacy or

performance reasons. Another attempt is through the inclusion of web beacons – invisible images

that are uniquely identified to track user activity, as discussed by Lawton [180] – which may also be

disabled for for privacy or performance reasons.

5.6.7 onFailure

The onFailure event is in some ways the opposite of the onSent event, as it represents the unsuccessful

receipt of a given e-mail instance. It is not guaranteed that this event will fire in the case of a delivery

failure, unless this failure information is provided to the IAML implementation. For example, if the e-

mail is mistakenly deleted by a mail daemon or deleted by a spam filter without any return notification,

this event may not fire.

An implementation of the IAML metamodel may allow the definition of an “email timeout”, de-

scribing the length of time before a queued e-mail (which has not yet triggered onSent) is tagged as a

failed delivery and onFailure is instead triggered. This would allow the implementation to guarantee

that an e-mail will eventually either pass or fail within a specified period of time.

5.6.8 onIterate

The onIterate event is defined for all Domain Iterator model elements, as discussed earlier in Sec-

tion 5.5.3. It allows the application to update parts of the application when the current result changes;

for example, by using “previous” and “next” buttons on a results page. As described later in Sec-

tion ??, this event is fired when the instance pointer of the iterator changes, or the contained Domain

Instance is reloaded.

5.6.9 Client-side Events

In IAML, there is no distinction between client-side and server-side events, and events are intended

to execute identically on both platforms according to the triggering definitions of the events. For

example, if the field value of a visual element is modified, then the onChange event must be triggered

for this visual element, even if the element is not currently visible or rendered.
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This transparency between client-side and server-side events allows a model developer to focus

on the functionality of an element, without needing to keep track of the rendering state of the entire

application. This reduces the complexity of the language, and is one of the design goals of IAML.

However, this approach places a technical burden on the web application implementation, as now this

implementation needs to emulate the rest of the application even if there the client-side interface is not

currently being displayed.

5.7 Operations

As discussed earlier in Section ??, operation modelling refers to the modelling of the lower-level

operations that make up higher-level behaviours, and this modelling may occur through a number of

mechanisms. IAML supports modelling behaviours through two model elements, each a subtype of

the abstract class Operation.

IAML defines a range of built-in Builtin Operations which can be used in both composite opera-

tions, and directly in the web application itself. For example, the Input Text Field has the primitive

conditions hide and show, which change the visibility of the given visual element. A full description

of each of these operations is outside the scope of this chapter; the interested reader is instead referred

to Appendix ??.

However, it is not possible to define a non-trivial web application without having to express some

aspects of complex behaviour and logic; in many cases, this represents the domain logic of the web

application. This logic may be expressed independently of the IAML model instance – for example,

through the manual extension of the generated web application – but it may be preferable to model

this logic directly within the same instance, to obtain model-driven benefits such as code generation

and model instance verification.

5.7.1 Modelling Complex Behaviour

As an example, consider a web application that needs to hide an Input Text Field if the value of a

separate text field is zero, or show the field otherwise. This behaviour may be implemented using only

ECA Rules, Parameters and Complex Terms as illustrated in Figure 5.2336. Here, an instance of a

Complex Term used as a Condition for one ECA Rule is reused as a Parameter.

However, there are a number of negative aspects that may arise when using this simplistic approach

to model complex behaviour, that need to be considered.

1. Conceptually, complex behaviour would no longer be represented by an Action, but would

instead be represented by the constraints operating on a particular ECA Rule as it applies to a

single instance of an Event. This has important ramifications: most importantly, it means that

an ECA Rule instance must support the definition of many Event triggers, otherwise complex

behaviour must be duplicated for each triggering Event.

This also means that an Action would no longer represent “a specification of parameterized

behaviour” as defined earlier in Section 5.3.3, but would instead represent a single form of

predefined behaviour that cannot be specified by the model developer. This also means that

behaviours could not be externally referenced – if the onChange and onInput events should

perform the same action, for example, the behaviour would need to be duplicated.

36This model example also illustrates the use of the XQuery Function fn:not in order to implement negation.
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Frame ’Using ECA Rules’ > Input Text Field ’Input Field’

onChange

onChange

: Event

Container: Input Field

hide

: BuiltinOperation

Container: Target Field

show

: BuiltinOperation

Container: Target Field

fieldValue

fieldValue

: Value

Type: xsd:integer

Container: Input Field

op:numeric-equal

: XQueryFunction

Container: root

fn:not

: XQueryFunction

Container: root

values

zero

: Value

Type: xsd:integer

Container: Input Field

run

: ECARule

condition

: SimpleCondition

b

: Parameter

run

: ECARule
condition

: SimpleCondition

a

: Parameter

a

: Parameter

Figure 5.23: Representing complex behaviour within IAML using two ECA Rules

2. As the complexity of a particular behaviour increases linearly, the complexity of each ECA Rule

increases exponentially. For example, consider a behaviour which may execute one of eight

different operations based on the evaluation of three boolean input variables. In this example,

eight ECA Rules would need to be provided, each with a different expression of the same input

variables. This represents a significant amount of developer effort, and may result in logic

errors.

3. The visual complexity of Figure 5.23 is a consequence of the visual notation used, where every

model element has a corresponding node or edge. This issue is discussed in further detail later

in Section ??. A new visual notation would need to be proposed, and this notation may need

to incorporate grouping related elements, a hybrid textual/visual syntax, or directly supporting

event algebra [329] and behaviour composition operators.

For example, an ECA Rule could specify a textual condition “[op:numeric-equal(text.fieldValue,

0)]” on the edge, which would implement the intended logic. This approach is extremely similar

to the use of OCL within UML [227], and would require the definition of a mapping between

model instance elements to references within the textual syntax. However, this approach would

vastly simplify the definition of complex conditions on a rule.

4. With this approach it is not possible to specify procedural-based behaviour such as loops37,

37As discussed earlier in Section 3.1.2, Fowler [90] argues that domain-specific languages should not exhibit Turing

completeness through general-purpose language concepts such as loops. IAML follows this guideline with the exception of
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or concurrency-based behaviour such as multithreading. Some procedural behaviour may be

emulated using special element wrapper structures – for example, a loop may be implemented

by allowing an ECA Rule to re-trigger its triggering Event.

5. Finally, this concept of event-oriented behaviour implies that the lowest level of the hierarchical

design of the IAML metamodel, as illustrated earlier in Figure 5.2, would be focused on the

definition of components. In order to improve the manageability of the complexity of the model

instance, it may instead be desirable to support a further hierarchical decomposition into an

operation modelling layer.

It is therefore more desirable to support modelling complex logic and behaviours within an Ac-

tion, than on the Conditions of an ECA Rule. Two approaches to modelling complex behaviour will

be considered, with respect to the modelling language development principles discussed earlier in

Section 2.7: the reuse of an existing textual expression language; or the reuse of a subset of UML.

Reusing an Existing Textual Expression Language

There are many existing languages for defining expressions and behaviour, and these could be used to

define Operations within IAML. For example, a new model element OCL Operation could be added

to the model, and contain an OCL operation [225]; similarly, a Java Operation could support a Java

method.

The main issue with using external languages for defining expressions and operations is of the

resulting implementation. For each target platform where the expression must be evaluated, either

an instance of that language must be available to evaluate the expression directly, or – if there is no

instance of the language in that target platform – the expression must be translated into another form

where it can be evaluated. For example, an OCL Operation would require an OCL interpreter for both

Javascript and PHP, as discussed later in Section 7.6.3.

Reusing UML Activity Diagrams

As discussed earlier in Section 4.3.1, UML activity diagrams may be used to model the lower-level

object and control flow of an activity. While the same behaviour may be implemented though UML

interaction sequence diagrams, Bennett et al. [23, pg. 106] argue that activity diagrams are more

useful to model business behaviours. Some lower-level constructs such as arithmetic are however

not supported, and it is not possible to consistently translate these models into code. The metamodel

specific to UML activity diagrams is also very large; at the time of writing, this included 52 separate

modelling concepts, and 31 common behaviours [227].

As the intent of an IAML Action is based upon the UML Activity model element, UML activity

diagrams should be well-suited towards the intent of operation modelling within IAML. UML activity

diagrams allow for the complex behaviour of the example illustrated earlier in Figure 5.23 to be im-

plemented as an independent Activity. In Figure 4.8, the same complex behaviour of Figure 5.23 has

been expressed with a UML activity diagram.

It is not desirable to directly use UML activity diagrams within the IAML metamodel due to the

size of the UML metamodel. However, it would be desirable to reuse aspects of the UML activity

describing Activity Operations, as general-purpose language concepts vastly simplify the implementation of domain logic.
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Frame ’Home’ > Activity Operation ’Example’

: StartNode

true?

: DecisionNode

call show

: OperationCallNode

call hide

: OperationCallNode

: FinishNode

incoming value

: ActivityParameter

Type: xsd:integer

op:numeric-equal

: XQueryFunction

Container: root

show

: BuiltinOperation

Container: Target Field

hide

: BuiltinOperation

Container: Target Field

values

zero

: Value

Type: xsd:integer

Container: Example

edge

: ExecutionEdge

no

: ExecutionEdge
yes

: ExecutionEdge

condition

: SimpleCondition

a

: Parameter

run

: ECARule

edge

: ExecutionEdge

run

: ECARule

edge

: ExecutionEdge

b
: Parameter

Figure 5.24: The same complex behaviour of Figure 5.23 expressed with an Activity Operation

diagram through metamodel restriction, where a smaller subset of the UML activity diagram is reused

along with their concepts, and concrete execution semantics are defined for this smaller metamodel.

TODO Jens question: two logic models?

5.7.2 Activity Operations

Model developers may therefore describe the complex behaviour of web applications using Activity

Operations, composed of operational elements derived from the UML activity diagram metamodel.

At 23 model elements, the metamodel necessary to define Activity Operations is much smaller than

the UML activity diagram metamodel. Due to lack of space, this metamodel is provided instead

Appendix C, along with the behavioural definitions of each metamodel element.

An Activity Operation allows the complex behaviour defined earlier in Figure 5.23 to be imple-

mented as the Activity Operation represented here in Figure 5.24; it is important to note the structural

similarities between this example model and the UML activity diagram representation of the same

behaviour in Figure ??. It is also important to note that this figure does not include the single ECA

Rule instance used to execute the Action.

Replacing the Default Behaviour of Model Elements

Throughout the definition of the IAML metamodel, all operations defined for each model element

is defined as an instance of the Operation abstract class; at runtime, these references are provided

instances of Builtin Operations through model completion rules. This design is intentional, as Activity

Operations – which are also subtypes of Operation – may replace these builtin operations to replace

default functionality. For example, it would be possible for a developer to replace the logic of the

update operation of Input Text Field to also trigger additional functionality, or to prevent the text field

from ever being updated through that operation.
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Figure 5.25: UML class diagram for the Wires package of IAML

5.8 Wires

As described earlier in Section 5.3.5, common web application design patterns are implemented as

instances of Wires, which are then used to complete the model instance according to the design of

the Wire through model completion. Each different design pattern is implemented as a subtype of the

Wire abstract class, illustrated here in Figure 5.25.

Depending on the design pattern behind them, Wires may either be unidirectional or bidirectional.

A unidirectional Wire has both a source and a target; whereas a bidirectional wire simply has targets.

In some cases, it may be possible to replace a bidirectional wire with two unidirectional wires38.

It is important to note this requirement as the distinction between Actions and Wires; an Action

has a defined functionality and behaviour defined as part of its instance, whereas a Wire is an ab-

stract description of higher-level behaviour, which is later implemented by ECA Rules through model

completion. A Wire instance will not affect the generated application without first performing model

completion on the model instance.

It is also important to note that Wires are a distinct concept from ECA Rules. ECA Rules specify

the actions that a specific event may conditionally execute when the event is triggered; whereas Wires

specify higher-level behaviours which are implemented through many individual model elements. For

example, the implementation of a single Sync Wire will usually include at least four ECA Rules

between the two connecting elements, as discussed later in Section ??.

In this section, four different Wires will be discussed. The inference rules necessary to complete

their functionality is not discussed here due to lack of space, however the inference rules for each Wire

is discussed in detail in Appendix ??; additionally, a summary of the number of inference rules used

to implement each Wire is provided separately in Appendix G.

5.8.1 Sync Wire

As discussed earlier in Section 4.9, one of the most common design patterns in web applications is

the need to keep the values of two elements synchronised. A Sync Wire can be used in situations such

as keeping user interface forms synchronised across different interfaces; or for synchronising both a

client-side interface and its server-side representation within a database.

An element may be connected to any number of Sync Wires; it is therefore possible that a Sync

Wire loop may exist within a web application. This is allowable within IAML, and it is a requirement

38For example, replacing a bidirectional Sync Wire with two unidirectional Set Wires.
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of the model completion and code generation frameworks to implement Sync Wires in such a way that

the application will not result in any infinite loops.

An additional feature of a Sync Wire is to automatically keep the children of two elements syn-

chronised as well. That is, if an Input Form with three contained text fields is connected to an empty

Input Form, the Sync Wire will automatically populate the second Input Form with text fields in order

to keep these forms synchronised39 . These generated text fields will then subsequently be connected

to the text fields within the original form using additional Sync Wires.

An example of a Sync Wire is illustrated earlier in Figure 5.22; here, an instance of a named

user may be modified through an Input Form. The behaviour and functionality of a Sync Wire is

implemented through model completion rules, and the interested reader is referred to the detailed

decomposition of this process in Appendix D.

5.8.2 Set Wire

This unidirectional wire focuses on another common design patterns in IAML models; the need to

keep the value of one object updated to another object, but not vice versa. A Set Wire can be used in

situations such as keeping a client-side interface updated with changes in its server-side representation

within a database, or for keeping a local database synchronised with a remote one. An example of a

Set Wire is illustrated later in Figure ??; here, a new user instance is used to populate the fields of an

Email.

Similar to a Sync Wire, a Set Wire may also be used to construct scenarios of looping Set Wires,

and these two wire types may be linked together. A Set Wire will also automatically keep the children

of two elements synchronised in a unidirectional manner; a Set Wire will generate Labels instead of

the Input Text Fields generated by a Sync Wire.

5.8.3 Detail Wire

As discussed earlier in Section 5.5.3, a Domain Iterator may be used to iterate over the contents of a

data source. This Domain Iterator can be connected to a user interface using a Set Wire; for example,

if a Domain Iterator is connected via a Set Wire to an Input Form, upon model completion the form

will contain a summary of labels of the current instance within the Domain Iterator.

However, it is often the case that more detail for a particular instance needs to be displayed; or

rather, a simple interface needs to be used when navigating over a result set, which may then be

expanded into a full interface. The unidirectional Detail Wire represents a way of “zooming in” to a

particular instance at runtime.

While the generated target view is normally connected to the source Domain Iterator via a Set

Wire – that is, the detailed view is only provided in a read-only fashion – it may be desirable to instead

replace this wire with a Sync Wire. In this way, the target view becomes a way to update the details

of a selected instance as obtained via an iterator.

Example

The use of a Detail Wire is best illustrated through an example from the Ticketiaml example applica-

tion. In Figure 5.26, a Detail Wire is connected from a Ticket Domain Iterator to a View Ticket Frame.

39It is not desirable for this to always occur; for example, password fields in a database should not be displayed to

anonymous users. IAML supports this scenario by designing overridable elements, as discussed later in Section 7.5.2.
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... > Session: ’User Session’ > Frame: ’Your Tickets’

Your Ticket List

: IteratorList

Container: Your Tickets

ticket iterator

: DomainIterator

user_id = :id

limit: 5

autosave: false

id

: DomainAttributeInstance

Type: xsd:integer

Container: instance

tickets.db

: DomainSource

Type: RELATIONAL_DB

View Ticket

: Frame

Container: User Session

set

: SetWire

id

: Parameter

: SelectEdge

detail

: DetailWire

Figure 5.26: Ticketiaml: Connecting a Detail Wire to a Domain Iterator

This will allow the user to view more details about each selected Ticket instance illustrated through

the Iterator List. In particular, model completion will have the following effects:

• The Your Ticket List Iterator List will now include a Button. When a user clicks on this But-

ton, the user will be redirected to the View Ticket Frame (the detail frame). As expected, this

behaviour is subsequently implemented through an ECA Rule.

• The View Ticket Frame will include an Input Form to view the details of the selected Ticket.

This form will be populated with the same instance that the user selected in the first Frame, by

defining a new Domain Iterator selected via a query based on an incoming Query Parameter,

and connecting this iterator to the form via a Set Wire.

5.8.4 Autocomplete Wire

As discussed later in Section ??, one of the motivating use cases for IAML was to support autocom-

plete. Autocomplete allows a user to complete an input field by performing a quick inline search

based on a search query, which occurs asynchronously without the user having to leave the current

page. IAML consequently defines the Autocomplete Wire model element to support this common

design pattern.

Autocomplete was one of the first well-known features of AJAX websites, as illustrated by the

Gmail web application here in Figure 5.27. A search box allows the user to navigate through a large

address book by typing in the first few characters of a name, e-mail address, or both. The search results

pop up underneath the input text, and can be navigated by using the keyboard. Once selected by the

keyboard or mouse, the resulting address is inserted into the input text field, and another address can

then be searched.
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Figure 5.27: An instance of autocomplete in Gmail

Internet Application > Frame ’Home’

email

: InputTextField

Type: builtin:iamlEmail

Container: Home

Search Iterator

: DomainIterator

matches(name, ?)

limit: 5

autosave: false

Contacts DB

: DomainSource

Type: RELATIONAL_DB

: SelectEdge

autocomplete

: AutocompleteWire

Figure 5.28: Autocomplete implemented in IAML using an Autocomplete Wire

Example

Autocomplete behaviour may be implemented within IAML using an Autocomplete Wire as illus-

trated in Figure 5.28. Here, a Domain Iterator is specified as the source, and an Input Text Field

as the target. This target field will be updated with the value of a selected attribute once it has been

searched for and selected by the user. The match reference of the Autocomplete Wire is set to the

“name” Domain Attribute of the underlying Domain Type.

The resulting application generated for this example model is dependent on the implementation

of the modelling language, code generation framework, and its runtime libraries. With respect to

the proof-of-concept implementation of IAML discussed later in Chapter 7, this example model will

generate an interface similar to Figure 5.29. Here, the user has entered in the search query “J”, and

a list of three matching results have been displayed; if the user clicks on one of these, the resulting

e-mail address will be inserted into the email Input Text Field.
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Figure 5.29: The user interface for an Autocomplete Wire, as generated by the proof-of-

concept implementation of IAML

5.9 Users and Security

As discussed earlier in Section 4.8, both users and security are important domain concepts for web

applications. A modelling language for RIAs should not only support the design of secure applications,

but also simplify common scenarios involving users and their roles and permissions.

5.9.1 Roles and Permissions

Based on the four security models proposed earlier in Section 4.8, IAML uses the Role-Based Access

Control (RBAC) security model as described by Sandhu et al. [261]. However, the restriction that

users may only possess permissions via a role is relaxed; a user may obtain any permission regardless

of roles. This approach is taken to increase flexibility; for example, one identified use case for RIAs

allows a web application to assign specific permissions to individual users40, bypassing roles alto-

gether. IAML defines the metamodel elements Role and Permission to represent the RBAC concepts

of roles and permissions respectively.

Definitions

Ceri et al. [44] argue that while some user information is generic – for example, e-mail addresses

and passwords – other user information is domain-specific. User profile modelling is therefore very

similar to the existing domain modelling approach supported by Domain Types, as discussed earlier

in Section 5.5.1.

IAML therefore reuses these domain modelling concepts to support user modelling as illustrated

in Figure 5.30. In particular, a Role is a subtype of a Domain Type; the Domain Attributes of the

Role represent the profile attributes of that role; and Roles may be defined in a multiple inheritance

hierarchy in order to define a role hierarchy.

In order to support the common user modelling functionality as described above, all Roles in a

model instance inherit a default role containing default user attributes, such as an iamlEmail-typed

Domain Attribute named “email”, and a string-typed Domain Attribute named “password”41. By

40Use Case 36: User Content Security.
41This datatype is typed to string until the datatype iamlPassword is defined, as discussed earlier in Section 5.4.2.
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Figure 5.30: UML class diagram for the Users package of IAML

defining a default role, model developers do not need to manually define user profile attributes that are

common to most web applications.

User Instances

As user modelling is based upon domain modelling, IAML reuses the concepts of data access in

Section 5.5.3 for defining the semantics of user instances. That is, user information may be stored in

any valid Domain Source (such as a relational database), and a Domain Iterator may be used to select

valid users in a web application according to a specific Role42. A Domain Iterator may also be used

to create new user instances.

5.9.2 Login Handlers

While it is possible to use Domain Iterators and Gates directly to prevent access to Scopes, access

control is a very important aspect of web applications, and there should be modelling support for these

common scenarios. A Login Handler can be used to prevent access to a Scope based on an incoming

requirement, and three requirements are defined in IAML.

Similar to a Wire, the functionality of a Login Handler is implemented through model completion

so a developer may modify the generated behaviour. In particular, a Login Handler will generate login

and logout pages, and add Gates or ECA Rules to redirect the user to these Frames if the current user

does not satisfy the requirements of the handler. These model completion rules are discussed in further

detail in Section ??.

While a Gate also prevents access to a Scope, the key difference is that a Login Handler pro-

vides most of the repetitive scaffolding for common authentication scenarios – such as user logins,

or passwords – whereas with a Gate this functionality must be implemented manually by the model

developer. A Login Handler controls access through two mechanisms, as illustrated in the package

diagram in Figure 5.31: secret keys obtained from Values, and domain objects and users obtained

from Domain Iterators.

A secret key Login Handler requires that the user provides a single password. This is the simplest

42In this case, the Schema Edge from the Domain Source will point to a Role rather than a Domain Schema.
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Figure 5.31: UML class diagram for the Access Control Package

form of a Login Handler which does not require a valid user instance. Alternatively, a domain object

Login Handler requires that a valid instance of a Domain Type exists, as specified by the incoming

parameters of the Login Handler. This parameter must be an Domain Instance or Domain Iterator.

5.9.3 Access Control Handlers

An Access Control Handler may be used to restrict user access to a Scope to a particular set of

Roles and/or Permissions, and is also implemented through the model completion rules discussed

later in Section ??. An Access Control Handler is similar to the Login Handler, except that a Login

Handler requires the creation of login and logout pages; a Access Control Handler is only focused on

the composition of complex role and permission requirements, and the two model elements may be

used simultaneously. The package diagram for the model elements necessary to implement a Access

Control Handler is also illustrated in Figure 5.31.

An Access Control Handler is also similar to a Gate (Section 5.10.4), except that Gates are only

focused on satisfying incoming Conditions. A Gate may be used in the implementation of a Access

Control Handler (i.e., through model completion), except that the model developer would have to

implement their own check permissions Operation manually.

Example

The Login Handler and Access Control Handler model elements may be used together to implement

complex security requirements; in particular, the Login Handler provides functionality to allow users

to login, and the Access Control Handler provides functionality to check the roles and permissions of

the current user.

This pattern has been used in the Ticketiaml example to implement user security, as illustrated in

Figure 5.32. The Login Handler ensures that a User has logged on, and the Access Control Handler
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InternetApplication: ’Ticket 2.0’ > Session: ’User Session’

Session Login Handler

: LoginHandler

Type: <...>

Require Named User

: AccessControlHandler

named_user

: Role

User

: Role

: RequiresEdge

required

: Parameter

Figure 5.32: Ticketiaml: Protecting access to a Scope via an Login Handler and Access Con-

trol Handler

ensures that the User also possesses the named_user Role.

5.9.4 OpenID

While password authentication is a common web application scenario for user authentication, more

recently the concept of decentralised authentication has become popular, and in particular the OpenID

standard [250]. OpenID allows for users to control their own identity verification, and this improves

both reliability, security and privacy. Modelling OpenID verification is an important use case43 of

Rich Internet Applications.

Web applications that use OpenID do not need to store sensitive personal information like e-mails

or passwords in order to perform identity verification, but can instead store a single URL which will

independently perform this service. By design, OpenID only handles identity verification, in order

to reduce the scope of the project and increase security. The OAuth standard [129] may instead be

utilised to deal with user profile management.

On a separate level, OpenID authentication can be considered as merely a specific type of authenti-

cation; other types of authentication include Google Accounts or Microsoft Passport, and it should be

simple to include these as separate authentication protocols. Furthermore, it may be possible to unify

all these different authentication methods into a single “authentication” datatype, such as the datatype

iamlIdentity proposed earlier in Section 5.4.2.

It is important to let the developer decide which types of authentication methods they support,

rather than simply assuming that the developer would want all authentication types. For example,

OpenID does not provide identity management, and is easier to subvert or modify than a Google

Account or a Microsoft Passport identity due to its decentralised nature; consequently there may be

some scenarios of authentication where the developer would consider OpenID identity verification as

too insecure.

Rationale behind the type iamlOpenIDURL

Many options were considered in methods of representing OpenID authentication. One option was to

define a particular type of Domain Attribute with an isSecure attribute which would represent authen-

43Use Case 50: Single Sign-In Solutions.
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tication attributes. However this would mean OpenID authentication could only apply to instances of

Domain Types.

Another option was to define a subtype of Gate – such as an OpenID Gate model element – which

would restrict access to a Scope if a valid OpenID was not provided to the gate. However this approach

is too platform-dependent – this would mean that each separate authentication method would have to

have a separate Gate subtype within the IAML metamodel.

The decision was made to extend the existing datatype framework and provide a type iamlOpenIDURL

to represent valid OpenID instances. This meant that much of the existing gates and validation frame-

works could be reused; for example, a Gate requiring a valid iamlOpenIDURL-typed Value instance

is one implementation of the proposed OpenID Gate.

This approach may break an assumption that cast instances can always be recast back to an original

type. One can consider this as a digital signature on the instance type; if the signature is lost by

converting the instance into a different format, then the digital signature (and consequently validity)

of the original instance is lost.

5.10 Scopes

As discussed earlier in Section ??, the ability to model lifecycle and handle lifecycle events may be a

useful technique in the development of RIAs. IAML supports lifecycle modelling by defining scopes

through the abstract model element Scope, and assigning various lifecycle events to these scopes.

The scopes in IAML are based on the possible lifecycle layers of Rich Internet Applications [323]

discussed earlier in Section 4.4.1. Each Scope has different initialisation and storage semantics; for

example, an Internet Application is accessible to all users, whereas a Session is only accessible by a

single browser instance. Scopes in IAML therefore follow a hierarchy, where one Scope can contain

another Scope, as illustrated in the package diagram in Figure 5.33.

A Scope may contain any number of value instances, including primitive type instances (Values,

Section 5.4.3) and complex type instances (Domain Iterators, Section 5.5.3). The semantics of how

these instances are represented, stored and shared across different users form the storage semantics of

that Scope.

When a Scope is rendered, the lifecycle events for that Scope must be executed before any ele-

ments within the current Scope are rendered. However, the lifecycle events for any parent Scopes –

that is, up the scope hierarchy – must be executed before the lifecycle events for the current Scope.

This allows for the designer to protect access to children scopes through parent scopes; for example,

in order to access a Frame, the current user must first verify their identity through a parent Session.

5.10.1 Internet Application

An instance of a Internet Application represents an entire web application, and is consequently the

root element of the model (and the indirect parent of all model elements). Because onInit is only

ever called once, this event can be used to perform application initialisation, such as registering web

services, initialising databases, and so on. The structure of the Internet Application model element is

discussed in further detail later in Section ??.
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Figure 5.33: UML class diagram for the Scopes package of IAML

5.10.2 Session

An instance of a Session represents a user session in the web application; that is, a “sequence of Web

transactions issued by the same user during an entire visit to a Web site”, as discussed by Cardellini

et al. [40]. Because a web application can support multiple Sessions, it is possible for a user to

possess many session instances at any point in time; this may prevent data leakage, as data between

the Sessions are by default independent.

5.10.3 Failure Handlers

It is necessary to support the graceful failure of errors in a web application. In IAML, the concept of

a failure handler is used as a form of exception handling, and each Scope in the web application has

an associated failure handler. In the case of an exception, this failure handler is executed.

An outgoing ECA Rule from a particular Scope with the name “fail” is defined as a failure

handler for the given scope. If an error occurs during the execution of the given Scope, then the

failure handler for that Scope is executed according to the semantics of the ECA Rule (Section 5.3.3).

For example, if an Operation executed via a ECA Rule fails, all subsequent Action Edges in the

current execution set are cancelled and the failure handler for the Scope containing the source of the
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InternetApplication: ’Ticket 2.0’ > Session: ’Manager Session’

current instance

: DomainIterator

named_user.id = :id

limit: 1

autosave: false

entryGate

require manager instance

: Gate

Container: Manager Session

Invalid Credentials

: Frame

Container: User Session

not empty

: ActivityPredicate

Container: current instance

fail

: ECARule

condition

: SimpleCondition

Figure 5.34: Ticketiaml: Protecting access to a Scope via an entry Gate

ECA Rule is executed.

If the current Scope does not define a failure handler, then the failure handler of the containing

Scope is used as the failure handler. If an exception is not caught through the containment hierarchy of

Scopes, then the exception is caught by the runtime environment and the web application will display

a runtime error.

Since exceptions are essentially a form of triggerable event, it may be desirable to instead imple-

ment exception handling through the event modelling approach of IAML. This remains future work;

for example, an event trigger such as onException could be introduced into the IAML metamodel,

using the same failure handler semantics as discussed before.

5.10.4 Gates

One common use case in web application development is to selectively prevent access into portions of

the web application, without first obtaining the appropriate permissions. Another is to force a user to

view an advertisement before they may proceed with the current page.

In IAML, a Gate may be used to address these scenarios, to restrict access into, or out of, a Scope

according to some condition. However, a web application developer should use Gates with caution,

as web application users may become frustrated if it is too difficult to satisfy a condition, and simply

abandon the web application.

Two types of Gates are defined. An entry Gate restricts access into a given Scope, and will prevent

entry until a particular Condition is satisfied. Likewise, an exit Gate restricts access out of a given

Scope, and will prevent exit until a particular Condition is satisfied. The functionality behind Gates

are strongly dependent on the method in which the Scope may be accessed.

An exit Gate cannot actually prevent the user from closing down their web browser, or manually

navigating to an external URLs. This is a restriction of the current implementation of web browsers.

An exit Gate may still be used to prevent any further interaction within the modelled web application.
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In the Ticketiaml application, an entry Gate is used to implement a role check for the manager

Session. As illustrated in the partial visual model in Figure 5.34, this Gate will fail if the incoming

Condition – a Predicate defined as part of the Domain Iterator within the same session – is not true.

Consequently, if a logged-in user tries to access any Frame within the protected Session, they will be

redirected to the Invalid Credentials Frame.

5.10.5 Query Parameter

A Query Parameter is an extension of the Value model element discussed earlier in Section 5.4.3,

and represents a parameter from the current browsers’ URI request. For example, a request URI

target?name=value would set the “name” Query Parameter to the value “value”. Conceptually a

Query Parameter is different from a Value; the Value belongs to the containing Scope and persists

across calls within that scope, whereas a Query Parameter is global and is entirely dependent on the

request URI. Therefore, it is necessary to have a separate element to distinguish the two.

5.10.6 Discussion

During the design of the IAML metamodel, other model elements within the IAML language were

also considered as potential Scopes. An Operation could be considered a Scope; here, the onAccess

event would be fired whenever the operation is executed. A Visible Thing could also be considered a

Scope, and would follow the onAccess event semantics of Frame.

Similarly, a request itself could be modelled as a Scope [323], but this would require a precise

definition of a user request. For example, can only requests triggered explicitly by the user be consid-

ered a request, or would requests via AJAX also be considered a request? Such a Scope could define

events for when the request begins, finishes, or is redirected to another URL.

The idea of supporting user-definable scopes was also considered; for example, allowing the de-

veloper to specify a “within the administration area” scope, or to designate scopes using tagging. This

was not one of the identified use cases of RIAs, and the implementation of this concept should not be

difficult as future work. However it is not possible to describe arbitrary events without requiring an

event modelling language, as discussed earlier in Section 5.3.3.

The IAML metamodel does not define pre- or post-lifecycle events, as these definitions have not

proven necessary. For example, an onFinish event for Sessions could be triggered when a Session

times out [220, pg. 114]; however, one cannot guarantee this event will ever be triggered.

5.11 Messaging

Messaging refers to the ability to encapsulate content into a form which may be sent from a source

to a recipient. Web applications are mostly pull-based; that is, they provide content in response to a

request, rather than actively pushing out content (push-based). However, web applications still have a

number of ways of pushing out content, even though their underlying implementations may be pull-

based. The most common technique is through sending e-mails44.

44Use Case 33: E-mailing Users.

target?name=value
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Figure 5.35: UML class diagram for the Messaging package of IAML

5.11.1 Email

An e-mail or mail message, as defined by RFC 2821 [164], is a message sent from a sender to a

receiver through a number of intermediary servers. The message itself has a number of headers and a

body which may be encoded according to MIME [98]. IAML supports the composition and sending

of e-mails through the Email model element, the structure of which is represented in Figure 5.35.

The Email model element is a wrapper for a number of Values, each representing the various

required headers for the e-mail message; and also contains events and operations necessary for sending

the actual e-mail, such as the send Operation. The Email model element also defines a number of

element-specific attributes, which are used as default values if a similarly-named Value is not present

or not set. As an Email is Wireable, its content may be synchronised through Set Wires.

When an Email is composed in order for delivery, the body of the Email will be composed of all

contained Properties and their values at the time the Email was sent. The format of this body may use

a custom template if this template is specified and supported by the language implementation.

5.11.2 Future Work

There are a number of other ways of delivering messages in web applications, as identified in the list of

use cases in Appendix A. As the proof-of-concept implementation of IAML has been strictly limited

to Basic RIAs as discussed earlier in Section 5.1.1, these messaging types have not been implemented

in IAML. However, they will be briefly discussed here as potential future work.

1. A short message may be sent to a user via a text message or SMS for a mobile device45. IAML

could therefore define a Text Message modelling element to support this scenario, which would

likely be similar in composition to the Email element above. That is, there could be onSent and

onFailure events defined, however there would be no need for a subject Value, as SMSes do not

support subject fields.

45Use Case 32: Mobile Phone Communication.
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Figure 5.36: Instantiation of user interface elements in WebML: an excerpt from the WebML

metamodel [213]

2. Web applications may communicate with web services46 , as discussed earlier in Section ??.

There are different technologies that may be used in communicating with web services; the

service may be defined formally according to standards such as SOAP [300] and XML-RPC

[318], or in a proprietary format using JSON [56].

5.12 User Interface Modelling

As discussed earlier in Section 2.3.1, the user interface is a very important aspect of RIAs as their

interactivity and richness depends directly on its interface. User interface modelling is supported in

IAML to describe the composition and structure of user interfaces, and is an important part of the

modelling language.

5.12.1 Existing Approaches in Modelling User Interface Types

WebML defines different types of Content Units such as Entry Units (similar to Input Forms) and

Index Units (similar to Iterator Lists) [43]. However within its UML metamodel, these different

types are treated as “black-box plugins to the three existing models, rather than constituents of an

independent modeling layer” [213]. To illustrate this design, an except from the WebML metamodel

as described by Moreno et al. [213] is illustrated in Figure 5.36.

The WebML approach is similar to defining a Visible Type element within the metamodel, to

allow different types of elements to be loaded through a library. The WebML approach achieves

this very weakly4748; by defining a type of type String, there is no guarantee that the given type of

ContentUnit will actually exist in the system, and all aspects of the implementation must essentially

implement their own type checking system. However, this does solve the issue of defining behavioural

semantics, because all of the semantics are moved into third-party plugins.

UWE, on the other hand, defines separate types of UIElements for each type of interface element

within the metamodel, such as Button and Text. An excerpt from the UWE metamodel as described

46Use Case 27: Web Service.
47This can be considered a specific instance of the Primitive Obsession design anti-pattern discussed by Fowler [88, pg.

81–82], where the differences between different types are expressed via a primitive, rather than through an object type

hierarchy causing issues with referential integrity.
48TODO: Should this anti-pattern have a specific name in this thesis? Such as Aversion to Object Type Inheritance.
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Figure 5.37: Instantiation of user interface elements in UWE: an excerpt from the UWE meta-

model [174, pg. 13]

by Kroiß and Koch [174] is illustrated in Figure 5.37. Instances of the user interface elements are

notated in UWE model instances using stereotypes [174, pg. 22]. UML itself does not provide any

standard way of modelling user interfaces, and extensions such as UMLi have been proposed [59].

As these two investigations show, both approaches can be used to model the user interface of a

web application. More research is necessary to identify when one approach is beneficial over the other.

However, the design of the user interface modelling aspect of IAML is most similar to the WebML

approach.

5.12.2 Visible Thing

In IAML, the Composite design pattern [105] is used to design user interfaces, as illustrated in the

UML class diagram in Figure 5.38. Visual elements may be used to compose interfaces, and these

elements themselves may be composed of other visual elements. The composite design pattern also

aligns nicely with the hierarchical modelling approach in IAML, as top-level visual elements can hide

the complexity contained within.

The Visible Thing type is the abstract type for all visual elements in the language. Since all visual

elements are designed to be renderable to the user, all Visible Things have additional events related to

user interactivity – such as the onClick and onInput events discussed earlier in Section 5.6 – and are

all Changeable (and therefore have a field value). This chapter will briefly introduce each subtype of

Visible Thing within IAML; these are discussed in further detail in Appendix ??.

It is also necessary to define the way in which a user interface is rendered to the user. The spatial

layout of a user interface is important, so each Visible Thing also specifies its render order. While

this spatial information is placed within the model instance itself, it may be desirable to move this

information into a separate layout model in the future to encourage the separation of concerns between

the interface layout and the underlying model.

Button

A Button represents a clickable button in the user interface, and is derived from the HTML BUTTON

element specification [294], If triggering the onClick event does not change the state of the web appli-

cation – for example, it does not modify any databases or interact with any external component – then

the Button may be rendered as a text hyperlink.
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Figure 5.38: UML class diagram for the Visual package of IAML
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Label

A Label represents a static block of text that is not user-editable, but may still be modified program-

matically and trigger onClick events. This element is derived from the HTML LABEL element specifi-

cation.

Input Text Field

A Input Text Field represents a text field that accepts text input from the user, and is derived from the

HTML INPUT element specification [294].

Input Form

An Input Form represents a group of related input elements, and is derived from the HTML FORM

element specification [294]. A Input Form is particularly useful when using a Sync Wire or Set Wire,

as discussed earlier in Section 5.8.1. In particular, if a Domain Iterator is connected via one of these

wires to an empty Input Form, the form will be populated with the necessary user interface elements

to read or to edit the given iterator instance.

Map

A Map represents a geographical area as an interactive map – that is, the map can be navigated from

within the browser. Compared to the other defined Visible Things, including the Map model element

is particularly interesting, as it has no analogy in either HTML 4.01 [294] or the upcoming HTML

5 standards [303]; however, if a platform-independent map element is introduced into an upcoming

HTML standard, the IAML metamodel will be automatically forward-compatible. A Map may contain

many Map Points in order to show multiple locations simultaneously.

Map Point

A Map Point represents a single geographical point, whereas a Map represents a single geographical

area. A Map may contain any number of Map Points, all which will be rendered within the current

Map as separate points; however, a Map Point does not need to be contained by a Map, in which case

the point is rendered individually. In order to model an indeterminate number of Map Points within a

Map, an Iterator List may be used as discussed in the next section.

Iterator List

All of the Visible Things discussed so far in this section only support single instances; that is, the

number of these elements that may be rendered is defined at design time, and cannot be controlled at

runtime. A Iterator List allows for a set of Visible Things to be rendered an arbitrary number of times,

controlled at runtime via an instance of the Domain Iterator model element.

For example, if an Iterator List contains a single Label and the connected Domain Iterator has

five results, then five Labels will be rendered at runtime. If the Domain Iterator is empty, then the

Iterator List will also be empty.
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Model Element Sample Representation

Button

Input Text Field

Input Form

Label

Map

Map Point

Iterator List

Table 5.4: Sample visual representations of interface modelling elements in IAML
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5.12.3 Sample Representations

A sample rendering for each Visible Thing subtype is illustrated in Table 5.4. In this summary, the

visual representations of Map and Map Point are those provided by the Google Maps mapping com-

ponent.

5.12.4 Frame

A Frame is used in IAML to represent a block of content that may be accessed and rendered inde-

pendently by a web browser, and as an Action may be connected by an ECA Rule to support user

navigation. By default, the interface to a Frame will be provided through the combination of web

technologies such as HTML and Javascript; however, if the render attribute of the Frame is set to

RSS20, then the content of the Frame will be available as an RSS 2.0-formated feed49 [258].

The concept of a Frame includes both the concepts of a top-level page, and a block of content

within another Frame. Top-level pages can also specify a custom URL in order to specify the intended

URL of the Frame. An important piece of future work is in supporting the definition of sub-frames,

and the composition of these with parent Frames in order to support richer web applications. This

technique could be used to implement functionality such as wizard-based workflows [289].

By specifying that an Frame is an Action, an ECA Rule may also be used to redirect the browser

to a different Frame. Any incoming Parameters to the connecting ECA Rule are therefore passed as

Query Parameters to the target Frame.

Example

Within Ticketiaml, the implementation of the Browse Events page is implemented through the defini-

tion of a Frame consisting of a number of contained Visible Things, as illustrated in the partial model

of Figure 5.39. Here, an Domain Iterator is used to populate an Iterator List of matching events via

a Set Wire, which then populate a Map via another Set Wire. This iterator is also restricted via an

incoming parameter from an Input Text Field.

5.13 Internet Application

In the previous sections of this chapter, each of the modelling concepts used in the IAML metamodel

have been defined. The final remaining element that needs to be defined is the Internet Application

element, which is the root element of any IAML model instance. An Internet Application defines

the Scopes, Domain Types (including Roles), Domain Sources, Permissions and Predicates of the

modelled RIA, as discussed later in Section ??.

5.14 Visual Modelling Metaphors

As discussed earlier in Section 5.1.5, the development of a visual modelling language is an important

design goal for IAML. One part of the design of the IAML visual modelling language included the

selection or design of visual metaphors – the reuse of familiar concepts outside of their conventional

49Use Case 26: Data Feeds.
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InternetApplication: ’Ticket 2.0’ > Frame: ’Browse Events’

events list
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Container: Browse Events
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Type: Any

Container: Browse Events

Events Map

: Map

Container: Browse Events

list events iterator

: DomainIterator

...

limit: 5

autosave: false

venue
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Figure 5.39: Ticketiaml: Designing the user interface for the Browse Events page using Visible

Things

meaning to express a similar concept – in order to reduce the mental load for developers, and improve

system accessibility, as discussed earlier in Section 3.3.1.

Each of the hierarchical layers proposed earlier in Section 5.2.2 can afford their own visual

metaphor. For example, the operation modelling layer can reuse the visual metaphors from UML

operation modelling [227]. It is important for a visual modelling language to explicitly state these

intended visual metaphors; a summary of these metaphors are provided in Table 5.5, similar to the

visual metaphor summary of Grundy et al. [123].

Layer Contents Proposed Visual Metaphor

Overview Domain sources, sessions, frames UML deployment diagram

Navigation Frames, sessions, access control, login handlers Navigation model

Interface Visual elements, interface events User interface builder

Domain Types, type relationships, attributes UML class diagram

Operations Activity nodes, conditional nodes, execution

flow, data flow

UML activity diagram

Table 5.5: Visual Metaphors for a Rich Internet Application modelling language
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5.14.1 Overview Layer

The top layer of the model instance, the overview layer represents the overall components within the

final RIA. This includes elements such as database and domain sources, sessions, user databases and

so on. The UML deployment diagram [227] seems to be an appropriate visual metaphor to adapt, as

this layer describes the composition and distribution of application elements, and does not describe

any navigation or behaviour.

5.14.2 Navigation Layer

This layer is concerned with the navigation between different pages, or targets, in the system. It is also

concerned with sessions and access control. Within the development of web applications, sitemaps

are often developed, which are hierarchical trees of content connected through navigation.

A navigation model, similar to the UWE navigation model [171], is therefore the ideal visual

metaphor for this layer. A navigation model illustrates the intended top-level navigation structures

between top-level elements in the application, similar to a sitemap.

5.14.3 User Interface Layer

The contents of a page, on the other hand, are inherently visual in Rich Internet Applications. This

layer is oriented most towards visual designers. Consequently, a user interface metaphor is chosen;

here, visual elements can be dragged and dropped onto the page. The spatial layout of the contents of

the diagram could dictate the final layout of the page50.

As discussed earlier in Section 5.12, UML does not support any form of user interface modelling

except through extensions to the language such as UMLi [59]. Therefore the user interface visual

metaphor used is the metaphor used in user interface builders such as VisualAge for Smalltalk [186].

5.14.4 Domain Modelling Layer

As discussed earlier in Section 5.5, domain modelling in IAML is strongly derived from the UML

class diagram model [227] as Domain Types have an inheritance hierarchy and each contain attributes

and references to other types. The UML class diagram visual metaphor therefore seems the most

appropriate metaphor to reuse as the domain modelling layer visual metaphor in IAML.

5.14.5 Operation Modelling Layer

As discussed earlier in Section 5.7, operation modelling in IAML is strongly derived from the UML

activity diagram model [227]; in particular, an Activity Operation contains a number of Activity

Nodes connected with others through Execution Edges and Data Flow Edges. Reusing the UML

activity diagram visual metaphor as a metaphor for operationa modelling therefore seems appropriate.

5.15 Unification of Type Instantiation and Classification

During the development of the IAML metamodel, a discrepancy was identified between domain in-

stance modelling and visual element instance modelling. For example, a Domain Instance must refer-

50For example, the top-to-bottom layout of the visual model should be used to derive the top-to-bottom rendering order

of the generated user interface.
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Figure 5.40: The consequences of unifying instance types within the metamodelling architec-

ture of the MDA

ence a Domain Type as a classifier, whereas an Input Text Field has no such classifier reference. The

fundamental difference between these two approaches is that a Domain Type classifies the Domain

Instance, whereas a given text field instance is defined by the Input Text Field type.

In terms of the metamodelling architecture of the MDA, this would change the IAML metamodel

and the resulting instances of the metamodel as illustrated in Figure 5.40. This refactoring would

introduce the following benefits:

1. A Frame no longer has to have separate references to Visible Things and Domain Instances.

This means that the instance specification model is more unified. This approach is also more

aligned with the underlying infrastructure of UML models [226, pg. 54].

2. Parts of the IAML metamodel can be simplified, as visual element instances such as Input Text

Fields and Buttons would be refactored out into the model instance layer. This would mean that

a library of visual elements could be provided, perhaps automatically.

3. A model instance developer could in the future develop their own Visible Types, allowing IAML

to adapt to new standards and innovations in RIAs. For example, the recent acceptance of

video as a first-level interface element with HTML 5 [303] could ostensibly be independently

defined by a developer as a Visible Type named “Video”. As discussed in Section 6.2.1 and

Section 6.4.3, EMF metamodels and Xpand templates can already be extended by third parties,

so this scenario can already be supported51 .

If these changes were applied to the metamodel mentioned previously in Figure ??, the resulting

metamodel would likely look similar to Figure 5.41. However, this metamodel change would result in

the following negative effects:

1. Parts of the IAML metamodel must become more complex. Two additional types, Visible Type

and Instance Specification, must be introduced, along with additional references.

51The extensibility of the proof-of-concept implementation of IAML is discussed later in Section 9.2.8.
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Figure 5.41: A proposed refactoring of the IAML metamodel to unify the instantiation of

Domain Instances and Visible Things

2. There is no benefit in moving instances of Visible Types to the model instance layer unless

developers can create their own instances of Visible Types. In the existing metamodel, different

Visible Types have differing event behaviours and user interface appearance. It would therefore

be necessary to also support the full definition of the Visible Types’ corresponding semantics.

This includes:

(a) Definition of arbitrary events. As discussed in Section 5.3.3, this would require the defini-

tion of an event modelling language, which is outside the scope of this thesis.

(b) Definition of code generation templates. A user-defined user interface element still needs

some way to be rendered. This would therefore require the definition of a templating

language, which is also outside the scope of this thesis.

Conversely, no support in defining these semantics for Domain Types was necessary, because all

user-defined Domain Types have the same behaviour and semantics. That is, the behavioural

difference between a “User” and a “Gig” is only the Domain Attributes inside; whereas the

behavioural difference between a “Button” and a “Video” is fairly substantial.

Alternatively, the WebML “black box” approach as discussed earlier in Section 5.12.1 could be

used here, where the model developer would define implementations completely independently

from the modelling language according to an interface. However, this means that a “Video”

element could not define its own events, such as the onPlay and onPause events of the HTML 5

video element [303].

3. It would no longer be possible to distinguish between different interface elements according to

their notation. For example, to a model instance developer an instance of a Button would appear

identical to a Input Text Field, except for a label describing the classifier. It is not appropriate

for a metamodel element to define its own notation – for example, a icon field on Visible Type

– as this breaks an underlying MVC model [173].

Finally, it was found that this unification process was not necessary in order to implement the

benchmarking application Ticket 2.0. This discussion is provided later in this thesis in Chapter 8.
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5.15.1 Generalising the Unification of Instance Types

From the previous discussion, it is desirable to extrapolate the underlying reasoning to propose rules

on instancing in metamodels. That is, to understand when it is appropriate to have type definitions

within the model instance layer, or when to keep it (or move it into) the metamodel layer.

• The definition of a type, such as Domain Type, should reside within the model instance layer

when some or all of these criteria are met:

1. There are none, or few, differences in behaviour between instances of the different types.

2. It is expected that different model instances will have their own domain-specific instances

of the types. It is likely that a developer will have to implement their own instance of the

type.

3. There will be a significant number of unique instances of the type over the lifetime of the

language within a suite of model instances of that language.

• Alternatively, the definitions of a range of type instances, such as Visible Things, should reside

within the metamodel instance layer when some or all of these criteria are met:

1. There are substantial differences in behaviour between instances of the different types, that

cannot be described within the current language, or the effort necessary to describe and

implement these behaviours separately against a modelling language is too great.

2. It is expected that different model instances will refer to predefined or built-in instances of

the type, with third-party instances of the type considered an exception.

3. There will be very few unique instances of the type over the lifetime of the language within

a suite of model instances of that language.

Alone, none of these criteria may be strong enough to warrant the investment necessary to move

the instance type definition to another layer. However, they may be useful in the development of

new modelling languages that require the definition of types, and the subsequent instantiation of these

types. During the development of the IAML metamodel, no such guide was available.

5.15.2 Applying Instance Unification to the IAML Metamodel

Other than Domain Types and Visible Things, there are a number of other elements in the IAML

metamodel that may be defined either as user-defined instances of types, or instances of user-defined

types. The guidelines introduced in the previous section can be used to make this decision, and in this

section this investigation will be performed.

Type Instantiation through Classifiers

With respect to the instance unification guidelines discussed in the previous section, the following

IAML concepts should support the definition of both types, and instances of these types, within a

single model instance:

1. Domain Types: Different model instances will have their own domain-specific Domain Type

instances, and there will be many unique types defined across all model instances. There is no

difference in behaviour between instances of different Domain Types.
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2. Functions and Predicates: The latest version of XQuery defines 180 different Functions [307],

and most web applications will need to also define their own libraries of Functions. It is fairly

simple to describe the differences in functionality of different Functions; new instances of Func-

tions can be described using languages such as OCL [225], or within the IAML metamodel itself

using Activity Predicates, as discussed in Section 5.7.

Type Instantiation through Instances

Similarly, the following IAML concepts should only support the definition of instances in a single

model instance, with the definition of the types of these instances residing in the metamodel definition

for that model instance:

1. Visible Things: The behavioural differences between different types of user interface elements

are significant, and the effort necessary to support these behaviours is significant. Most web

applications will use a common range of user interface elements.

2. Wires: The behaviour of Wires are described with a complex set of model completion rules,

as discussed in Section 5.8. As discussed by Wright and Dietrich [324], it is desirable for third

parties to define their own model completion rules, however this process is not simple. Allowing

Wires to be typed would mean that the IAML metamodel would need to support the elements

of model completion directly – in other words, a model completion rule modelling language.

3. Actions: As discussed in Section 5.3.3, there are only two different types of Actions in the

IAML metamodel – Operations and Frames for navigation – and it is not clear if there may be

any other types of Actions for RIAs.

4. Events: As discussed in Section 5.6, a modelling language that supported the third-party defi-

nition of events would need some method for defining the semantics of the events themselves.

This would therefore require the definition of an event modelling language, which is outside the

scope of this thesis.

Type Instantiation through either Classifiers or Instances

There is one IAML concept that may be defined using either of these two instance unification guide-

lines, as it is not yet clear which approach would be stronger. In the current IAML metamodel, the

different types of Scopes are defined as part of the IAML metamodel, as discussed earlier in Sec-

tion ??.

1. Scopes: The only behavioural difference between Scopes is the method in which the Properties

of that Scope is stored. However, it is not expected that a web application will have a wide range

of Scopes, and most developers will simply use the builtin Scopes such as Session and Frame.

Discussion

As discussed earlier in Section 5.1.4, the benchmarking application Ticket 2.0 may be used to verify the

design decisions taken in the development of the IAML metamodel. As discussed later in Chapter 8,

this implementation suggests that these design decisions were correct, as no additional types needed

to be defined within the language, and all of the types defined were unique to the application itself.
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5.16 Conclusion

In this chapter, the complete formal definition of the Internet Application Modelling Language has

been provided, including the metamodel structure, constraints operating upon model instances, and

the functional semantics of each model element when translated into a generated application. The

next chapter will focus on the implementation of this language into a CASE tool using existing model-

driven development technologies.





Chapter 6

Implementation Technologies

As discussed earlier in Section 5.1.5, an important design goal of IAML is to provide a proof-of-

concept implementation of the modelling language, in order to validate the metamodel. This imple-

mentation will be used in the evaluation of the modelling language; serve as a reference implementa-

tion for future work; and may increase acceptance of the language by the development community.

A range of technologies – from metamodelling environments to code generators – may be used in

such an implementation, and each technology has many existing implementations. In this chapter, each

of these technology implementations will be evaluated, and the best technology implementation will

be discussed. This combination of selected technologies will form the basis of the proof-of-concept

implementation of IAML as discussed in the next chapter.

6.1 Common Comparison Criteria

Each technology in this chapter will initially be evaluated against a suite of common criteria. For

example, the execution or runtime environments of a technology can be described and documented;

and project quality metrics can be applied if source code is available.

6.1.1 Execution Environment Comparison Properties

In this chapter, the execution environment refers to the environment in which the technology is written

and executes. This environment can be different from the implementation language; for example, most

Eclipse plugins are written in the Java language, but need to be executed within the Eclipse framework

[104]. For the proof-of-concept implementation of IAML it would be desirable to select technologies

implemented with the same languages and executed within the same environments. The following

common properties will be discussed for each technology in this chapter:

• Language: What general-purpose programming language is the technology implemented in? To

simplify the implementation of a proof-of-concept environment, it would be beneficial to select

components that are all implemented within a single language, as no cross-platform integration

would be necessary.

• Runtime Environment: Applications using the particular technology may need to be integrated

within another environment or container at runtime. This additional dependency increases the
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overhead of using the technology, but may also provide a range of services necessary to sim-

plify an implementation. For programming languages this does not refer to the development

environment, but any runtime that compiled instances of the language must rely on.

• Open Source: Is the technology available under an open-source license approved by the Open

Source Initiative1? As discussed earlier in Section 2.7.4, open source software can reduce de-

fects [209], improve functionality and increase developer accessibility when compared to closed

source software.

• Version: This property simply states the version of the technology evaluated.

Eclipse Framework

Many of the technologies discussed in this chapter are provided as plugins to the Eclipse Framework

– a software development framework designed to support a wide variety of development languages

and approaches through a rich plug-in interface, as discussed by Steinberg et al. [279, pg. 3] and

Gamma and Beck [104]. These plugins are implemented as OSGi bundles [283] – discussed earlier in

Section 4.4.1 – allowing components to be installed and removed at runtime in a flexible manner. All

Eclipse plugins therefore have the Eclipse framework as a runtime environment dependency.

6.1.2 Open Source Comparison Criteria

Some technologies reviewed in this chapter are provided under open source licenses, and it is therefore

appropriate to also evaluate the quality of these technologies according to its open source approach.

Two existing frameworks for evaluating open source components are the Qualification and Selection

of Open Source Software (QSOS) [235] and the Business Readiness Rating (OpenBRR) [234] frame-

works.

Deprez and Alexandre [63] evaluated both of these frameworks and found that while QSOS pro-

vides more extensive rating criteria and supports versioning, OpenBRR provides scoring with less

ambiguities and results can be tailored towards a specific context. At the time of writing, however, the

progress of OpenBRR appears to have stalled, with no documentation released since 20052. Never-

theless, in this thesis the OpenBRR will be used to form the basis of open source evaluation criteria.

The most recent release of OpenBRR [234] defines 28 metrics categorised into eleven categories,

along with a representative set of metrics to illustrate the model. The authors argue that these repre-

sentative metrics should be tailored towards the particular domain. In this thesis, no such tailoring was

performed as it was not necessary; the full range of metric values were present through the evaluations,

so no reweighting was necessary.

While every category in the OpenBRR ranking system represents an important part of the overall

ranking, five of these categories have been selected as particularly important for the proof-of-concept

implementation – quality, support, documentation and adoption. These categories are those most

likely to suggest a simple implementation process, and are described by the OpenBRR standard [234]

as follows:

• Quality: “Of what quality are the design, the code, and the tests? How complete and error-free

are they?”

1The Open Source Initiative: http://www.opensource.org.
2At the time of writing, the OpenBRR website http://www.openbrr.org simply states that “we will soon be updating

this site with new content.”

http://www.opensource.org
http://www.openbrr.org
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• Support: “How well is the software component supported?”

• Documentation: “Of what quality is any documentation for the software?”

• Adoption: “How well is the component adopted by community, market, and industry?”

• Architecture: “How well is the software architected? How modular, portable, flexible, extensi-

ble, open, and easy to integrate is it?” In particular, a system with a high architecture score will

most likely support third-party extensions.

The categories of usability, performance, security and stability are not too relevant for proof-

of-concept implementations, as they would not have as much impact as these selected categories.

Additionally, the community category is very related to the support and adoption categories, so may

be omitted. The individual metric values for each technology is provided in this thesis in Appendix E.

In the following sections, the overall OpenBRR Rating of each technology implementation will be

calculated, which defines a score from a minimum of 28 (unacceptable) to a maximum of 140 (excel-

lent)3. An average score of each of the five important categories discussed above will be provided as

a numeric value.

Applying OpenBRR to Closed-Source Projects

At first glance, it seems possible to apply the OpenBRR metrics to closed-source projects. For ex-

ample, metrics such as frequency of releases, types of documentation, and activity on mailing lists

can all be derived without needing access to open-source artefacts or methodologies. However, other

metrics such as number of bugs, the number of security vulnerabilities and the number of unique con-

tributors simply cannot be derived from a closed-source development methodology. Consequently,

closed-source projects are simply given an OpenBRR ranking of n/a in the following chapters.

6.2 Metamodelling Environments

A number of metamodelling environments exist in academia and industry to assist the quick develop-

ment of model-driven platforms and technologies. It is preferable to reuse an existing metamodelling

environment over developing an environment from scratch, as a metamodelling environment repre-

sents a significant amount of development effort, and it does not seem like a finished environment

would be an improvement over existing environments.

There are many existing metamodelling environments as discussed by Fowler [90, pg. 140]4, such

as MetaEdit+ [158], the Meta-Programming System (MPS) by JetBrains [150]5, and the Generic Mod-

eling Environment [182]. However, a full evaluation of each of these metamodelling environments is

outside the scope of this thesis. In this section, four popular metamodelling environments – initially

selected based on their industry support and integration with other technologies – will be investigated

and evaluated according to a number of evaluation criteria.

3In OpenBRR, each criteria is given an integer ranking between 1 (unacceptable) to 5 (excellent) [234]. A future standard

of OpenBRR may benefit in changing the scale to use 0 (unacceptable) to 4 (excellent), as this can make comparisons simpler.
4Fowler uses the term “language workbench” to describe a metamodelling environment.
5The first public release of JetBrains MPS was released in 2009, and as such was not an option when this research was

started.
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This investigation is particularly important since the metamodel forms the “core” of the resulting

development environment, and the choice of metamodelling environment will affect other aspects of

the implementation, such as code generation and verification technologies.

6.2.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) is a Java-based meta-modelling suite for developing meta-

models within the Eclipse framework [279]. It is well supported by the Eclipse foundation, and is

used as the meta-modelling technology behind a number of other Eclipse-based projects, such as

GMF. EMF focuses on the serialisation and functionality of the metamodel, and does not provide a

graphical editor for model instances natively; instead, the GEF and GMF components discussed later

in Section 6.3 can be used to provide a graphical editor [121].

EMF exists as part of the extensive Eclipse Modeling Project, which (at the time of writing)

consisted of eleven sub-projects and over 130 components6 . These sub-projects include graphical

modelling, model transformations and model verification. Furthermore, as part of the Eclipse project,

integration with other Eclipse technologies – such as version control, development environments and

project management – is fairly straightforward.

Meta-models may be loaded from a diverse range of sources [279], such as Ecore model instances

created by the EMF model editor; annotated Java source code; XMI models [223] exported from UML

CASE tools, such as Rational Rose or ArgoUML [291]; XML Schemas [299]; or metamodels created

dynamically at runtime. Ecore model instances can also be created graphically through the Ecore Tools

graphical editor. Verification is supported by the EMF Validation framework, and constraints can be

defined using a number of languages, including OCL constraints [225], XML Schema constraints, and

manually-implemented Java code generated through scaffolding [279].

A loaded metamodel can then be used to generate the necessary Java scaffolding source code of the

corresponding model, using code generation written according to Java Emitter Templates (JET). The

generated Java scaffolding may be modified manually, with the generator controlled by a @generated

annotation7 .

Alternatively, the functionality of the metamodel can be provided through Dynamic EMF, which

is a simple interpretive implementation of EMF designed for sharing simple objects [279, pg. 36–

38]. EMF also supports the extension of existing metamodels by allowing additional metamodels

(resources) to be loaded at runtime.

Once created, this scaffolding can be used to create new model instances as simply as creating

new Java objects. The EMF framework deals with all the necessary logic behind the implementation,

natively supporting serialisation to XMI [223]. EMF metamodels are usually executed within an

Eclipse environment, but may be used in a standalone environment.

The underlying meta-metamodel for EMF metamodels is the Ecore metamodel, which is defined

in terms of itself. This self-definition allows for Ecore to reside at the M3 layer of the metamodelling

architecture of MDA. As discussed earlier in Section 3.1.5, the Eclipse Modeling Framework was built

on EMOF [?] and model instances can be serialised directly to EMOF [279, pg. 40].

6This component count was calculated by getting all non-release components from Bugzilla:

https://bugs.eclipse.org/bugs/query.cgi?classification=Modeling&query_format=advanced.
7When an EMF-generated class is regenerated, only fields and methods with an unmodified @generated annotation may

be modified or removed by the generator [279, pg. 305–308]; this approach follows the code generation principles proposed

by Fowler [90, pg. 126].

https://bugs.eclipse.org/bugs/query.cgi?classification=Modeling&query_format=advanced
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<eClassifiers xsi:type="ecore:EClass" name="Value">

<eAnnotations source="http://www.eclipse.org/emf/2002/GenModel">

<details key="documentation" value="Represents a single value,

accessible and modifiable at runtime."/>

</eAnnotations>

[...]

</eClassifiers>

Listing 4: EAnnotation documentation in Ecore

EMF models also support model annotations using the EAnnotation model element. These anno-

tations are particularly helpful when providing metamodel documentation, as illustrated in Listing 48.

If necessary, these annotations can be stored and accessed at runtime [279].

6.2.2 ArgoUML

ArgoUML is a free, open-source modelling tool written in Java which was originally developed as a

UML diagram editor [254]. While it was originally designed to only support the development of UML

diagrams, it has since been extended to support UML Profiles, and thus is a form of a metamodelling

environment. It has been used to implement other model-based prototypes, such as the discontinued

ArgoUWE editor for UWE [167], and ARGOi for UMLi [58, 59].

The ArgoUML meta-model is based on all UML 1.4 diagrams [222]; and as such, software based

on ArgoUML also needs to describe their meta-model in terms of UML 1.4 concepts. Internally,

model instances are instances of JavaBeans [254], and can be serialised to and loaded from XMI. At

the time of writing, ArgoUML had no plans for supporting recent revisions of UML such as UML 2.0

[227].

Custom metamodels are defined in ArgoUML by implementing UML Profiles [167], which may

be implemented visually using the graphical editor of ArgoUML itself and loaded through XMI files.

However this approach is extremely limited, and profiles are usually supplied as Java class instances

instead9. These are then provided to ArgoUML at runtime through additional JAR files, known as

modules. These are loaded at startup, with the architecture of these modules following the Dynamic

Linkage design pattern [117]. As ArgoUML metamodels are Java class instances, it is not possible to

extend these profiles arbitrarily, hindering metamodel extensibility.

One benefit of using ArgoUML is that it provides a free graphical CASE tool to any new models,

which will be discussed later in Section ??; in fact, it is only possible to create model instances

graphically in ArgoUML, as illustrated in Figure 6.1. Model instance verification is supported through

the concept of critics – implemented as Java class instances – which are used to highlight potential

problems in a model instance [254]. ArgoUML provides the Dresden OCL toolkit [?] to implement

OCL constraints, but as profiles are designed to be implemented through Java, OCL constraints for a

particular profile must be integrated manually.

ArgoUML is best suited for developing graphical editors for metamodels entirely defined within

UML 1.4, as any functionality not directly supported by a UML Profile must be implemented man-

ually. The fact that ArgoUML does not provide easy integration with other model-driven technolo-

gies, such as code generation or model completion, consequently suggests that developing a proof-

8TODO: Ensure that this documentation is correct once Appendix ?? is completed.
9UML Profiles in ArgoUML are represented as instances of the org.argouml.profile.Profile abstract class.
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Figure 6.1: Using ArgoUML to define a UML class diagram

of-concept implementation of IAML using ArgoUML would be very difficult and require significant

development effort.

6.2.3 Whitehorse

In Visual Studio 2005, Microsoft introduced a model-driven environment for developing applications.

This framework was originally codenamed Whitehorse [52] and released under the name DSL Tools,

but is currently released under the name of the Visualization and Modeling SDK (VMSDK). The

environment is implemented with, and generates to, .Net-based languages such as C#.

Whitehorse provides a graphical interface for developing the structure of domain-specific lan-

guages, as well as visualising the created model instances of the developed language. The generated

language supports model verification only in terms of a validation framework10, and constraints must

be written in .Net; there is no support for OCL constraints.

In Whitehorse, a DSL can only be defined using the provided DSL editor. The Managed Extensi-

bility Framework can be used to extend existing metamodels, however this extensibility is not provided

automatically and there are a number of files that must be created manually [207].

The underlying meta-metamodel of Whitehorse-developed metamodels is the Domain Model Frame-

work (DMF) [52] – a technology that fulfills a similar purpose as EMF, however is not related to any

10Domain-specific language verification uses the Microsoft.VisualStudio.Modeling.Validation namespace.
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Figure 6.2: Defining a metamodel instance using Marama, adapted from Grundy et al. [124]

version of MOF at all. Similarly, the meta-metamodel behind DMF – which in this thesis is tentatively

named the DslDefinitionModel11 – does not appear to be defined in terms of itself. This step is nec-

essary for a meta-metamodel to be a valid M3 layer of the Model-Driven Architecture, as discussed

earlier in Section 3.1.5.

Since Whitehorse was announced, there appears to have been very little academic or industry

uptake of these technologies. However, the recent release of Visual Studio 2010 [?] has reorganised

the DSL software development kit into the Visual Studio Visualization and Modeling SDK. This new

release supports the ModelBus model integration framework [30], and supports the serialisation of

model instances into the XMI format. Previously, model instances could only be serialised using a

proprietary XML-based format.

In this thesis, Whitehorse is the only metamodelling environment evaluated that is closed-source,

and the metamodelling environment can only be used if a valid Visual Studio license is available. A

modelling environment generated through Whitehorse still requires the Visual Studio IDE to execute,

and thus end users also require a licensed copy of Visual Studio to host the environment.

6.2.4 Marama

The Marama project started off as an application to improve the quality of meta-modelling tools

generated by the Pounamu project [328]. Pounamu was originally a project to specify and generate

independent visual modelling tools, and Marama was used to generate an Eclipse-based editor instead

[122]; Pounamu now appears to be discontinued.

The Marama project is implemented within the Eclipse environment using the Java language, and

generated modelling environments are hosted within the Eclipse environment. The project is based

heavily on the EMF and GEF projects discussed in this chapter, and each modelling concept has an

associated metamodel. Once a metamodel has been defined, model instances can be created visually

11The XML namespace used for metamodel instances defined using the Whitehorse development tools is

http://schemas.microsoft.com/VisualStudio/2005/DslTools/DslDefinitionModel.

http://schemas.microsoft.com/VisualStudio/2005/DslTools/DslDefinitionModel
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using the graphical environment discussed later in Section 6.3.5.

Marama defines its own meta-metamodel for the definition of metamodels, which is referred

to in this thesis as MaramaModelProject (MMProject), and is adopted from an extended Entity-

Relationship paradigm [188]. However, this meta-metamodel is not defined in terms of itself; rather,

the meta-metamodel is defined in terms of an Ecore model instance12 [80]. There is no explicit support

for the extensibility of existing metamodels defined within Marama.

Metamodel instances can be defined visually as in Figure 6.2. The MaramaTorua project [140]

supports the definition of Marama metamodels from XML Schemas or the Microsoft schema inference

engine, but this is not provided as part of the Marama project itself. Constraints (known as Formulae in

Marama) can be supplied either as textual OCL constraints, or the OCL constraints can be constructed

visually using MaramaTatau [190]; user-defined extensions for these constraints can also be provided

in Java [188].

6.2.5 Summary

A summary of these modelling environments is provided in Table 6.1. Along with the common com-

parison criteria discussed earlier in Section 6.1.1 and Section 6.1.2, each environment was evaluated

on a number of additional criteria:

• Visual Definition: Can a metamodel be implemented graphically? For a metamodelling envi-

ronment that is intended to support the definition of graphical modelling languages, this feature

may be essentially provided “for free” by the environment itself.

• Graphical Editor: Does the metamodelling environment provide a graphical interface for in-

teracting with a developed model instance, and is this interface the intended means of end-user

interaction? This is not strictly beneficial, as the graphical representation of a model instance

should be kept separate from the underlying model instance representation.

• Meta-model Extensibility: If a developer creates an instance of a metamodel, can this meta-

model later be extended by a third party? That is, can a third party add additional elements and

constraints to an existing metamodel? Metamodel extensibility allows a third party to extend

the modelling environment or adapt it to a particular domain, and is a driving force behind UML

Profiles [102].

• Meta-metamodel: What is the underlying meta-metamodel of the developed meta-models? That

is, what language or technology is used to represent instances of metamodels used in the mod-

elling environment?

• MDA-compliant M3: Is the meta-metamodel compliant to the MDA requirement for a meta-

metamodel [165, pg. 88]; that is, has the meta-metamodel been defined in terms of itself?

• Meta-model Sources: What kinds of sources may be used to develop a metamodel instance?

Being able to import a metamodel from an existing source may simplify the development of the

modelling environment.

• Verification Languages: Which model instance verification languages does the metamodelling

environment natively support, if any? In many cases, the metamodelling environment may be

extended with additional languages as discussed later in Chapter ??.

12The MaramaModelProject meta-metamodel instance is provided in project.ecore.
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Requirement EMF ArgoUML Whitehorse Marama

Language Java Java .Net Java

Runtime Environment Standalone ArgoUML Visual Studio Eclipse

Open Source X(EPL) X(New BSD) 7 X(MPL)

Version 2.5 0.28.1 2010 20101022

Visual Definition X X X X

Graphical Editor 7 (GMF) X X X

Meta-model Extensibility X 7 X 7

Meta-metamodel Ecore UML DMF MMProject

MDA-compliant M3 X X 7 7

Meta-model Sources Ecore UML Profiles DSL Editor Marama

Annotations JARs XML Schema

UML Microsoft WS

EMOF

XML Schema

Dynamic

Verification Languages Java Java .Net Java

OCL OCL OCL

XML Schema

OpenBRR Rating 120 83 n/a 60

Average Quality 3.5 4.2 2.5

Average Support 4.5 1.0 1.0

Average Documentation 5.0 2.0 2.0

Average Adoption 4.0 2.0 3.0

Average Architecture 4.0 5.0 1.0

Table 6.1: Comparison of Meta-Modelling Environments

From the evaluation of existing meta-modelling environments, the Eclipse Modeling Framework

was found to be the most suitable for the implementation of IAML, due to its openness, industry sup-

port, documentation, and easy integration with the Eclipse environment. Marama is very promising,

but without the same level of industry support as the EMF project and high quality documentation it

may be difficult to adapt the toolset to new environments and situations.

6.3 Graphical Modelling

Graphical modelling provides an environment where an underlying model instance, as described by a

metamodel, may be represented as a visual model; this is achieved through the association of shapes

and relationships to the metamodel element types, through some form of mapping. This section will

evaluate a range of existing graphical modelling environments, with the intent of reusing one of these

environments rather than having to develop one from scratch.

A common design pattern found with model-driven graphical modelling environments is that this

graphical-to-metamodel mapping process is decomposed into smaller model instances which are later

combined. For example, the design of the shapes, and the association of these shapes to model ele-

ments, can be described as a “gallery” metamodel to support common shapes across multiple editors
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[121, pg. 61].

6.3.1 Graphical Editor Framework

The Graphical Editor Framework (GEF) [121] is an Eclipse-based framework which aims to assist

in the development of rich graphical editors and user interface views. It extends on its underlying

technologies, Draw2D and SWT, to provide a higher-level interface using concepts such as shapes and

connections, and also provides a “toolbox” interface that can be used to create new shapes. GEF acts

as the controller between an underlying model and the interface, following the Model-View-Controller

(MVC) approach [173].

GEF is designed to operate against some type of model, which does not need to be any particular

metamodelling framework; in most cases, this model is a set of custom Java classes. GEF is therefore

easy to integrate with EMF, as EMF can be used to generate custom Java classes [6]. The framework

is used as the basis for a number of other graphical environments, such as GMF and Marama which

are both discussed later in this section.

Shapes in GEF are instances of Java classes, and GEF does not provide a metamodel for describing

these shapes; this is in contrast to the gmfgraph metamodel approach provided by GMF as discussed in

the next section. Because the underlying model source is simply Java classes, there is also no notation

metamodel.

GEF is therefore not used to generate graphical editors, in contrast to how many of the other

technologies in this section are designed; rather, it exists as a runtime wrapper around existing Java

software and different forms of model instances. This means that GEF’s extensibility relies on the

developer manually extending the GEF framework directly, as opposed to supplying the framework

with different configuration inputs.

6.3.2 Graphical Modeling Framework

The Graphical Modeling Framework (GMF) [121] aims to extend the functionality offered by EMF

and GEF into a higher-level graphical editor framework. GMF abstracts the functionality of graphical

editors into four metamodels – gmftool for the palette tooling definition, gmfgraph for the graphical

shape definitions, gmfmap for the mapping of shapes to model elements, and gmfgen for the gener-

ation of the editor itself – and provides a higher-level view of a graphical editor than the underlying

technologies.

The developer of a graphical editor is given the task of implementing model instances according to

these metamodels, each of which are implemented and serialised using EMF. GMF can then compile

these definitions into a finished graphical editor, with each editor provided as an Eclipse plugin. To

assist in the development of these metamodels, GMF provides automated tools and wizards to simplify

the development of these model instances. A screenshot of the GMF dashboard wizard is provided in

Figure 6.3; this wizard highlights the steps necessary to develop a GMF-based graphical editor.

The translation of these graphical model instances into other model instances is achieved with

JET, and the generation of the Java source code for the final diagram editors is implemented using

Xpand; both of these technologies are discussed later in Section 6.4. These templates are extensible

using dynamic templates, which allow the editor developer to customise the generated editors without

modifying the GMF framework directly; the implementation of dynamic templates in an editor is

discussed later in Section 7.4.2.
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Figure 6.3: The GMF Framework Wizard in Eclipse, illustrating the steps necessary to create

a graphical editor

GMF uses the GMF Notation metamodel for annotating model instances with the information

necessary to visually represent the model instance. By default, the model instance and the associated

visual representation model instance are stored in separate resources13 . Each of these metamodels are

implemented as an Ecore metamodel under the EMF framework, as discussed earlier in Section 6.2.1.

6.3.3 ArgoUML

As discussed earlier in Section 6.2.2, ArgoUML was originally developed as a UML diagram editor,

which has since been used as a graphical editor for other UML-based models, such as ArgoUWE for

UWE. However, since ArgoUML is designed to edit UML diagrams only, it is unlikely that it can be

used to edit instances of metamodels that are not related to UML.

The underlying diagram technology for UML is a custom-built Graph Editing Framework (GEF*14)

[254]. GEF* is published as a standalone project under the open source BSD license.

Model element shapes in ArgoUML are not defined according to any metamodel, but are Java

instances of GEF classes that are created manually15. The underlying model instance and the visual

representation are still represented separately; the visual representation is serialised using the Precision

Graphics Markup Language (PGML) [254], which itself is defined using a DTD [293].

As discussed earlier in Section 6.2.2, extensions of ArgoUML rely on defining modules and plug-

ins [285]. There is no generation stage, and thus there is no graphical editor generator framework that

can be extended. However, CASE tools that are based on ArgoUML automatically obtain the notation

and layout functionality of the framework, and thus ArgoUML can be considered high-level.

13For example, a UML model instance could be stored in instance.uml, and the visual representation would be stored

in instance.uml_diagram
14Since the Graphical Editor Framework discussed earlier also uses the GEF initialism, the Graph Editing Framework

will instead be referred to in this thesis as GEF*.
15For example, the UML model element FinalState is implemented by the Java class

org.argouml.uml.diagram.state.ui.FigFinalState.
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Figure 6.4: The Shape Designer of Marama showing the shape design and corresponding

concrete view, from Grundy et al. [124]

6.3.4 Whitehorse

As discussed earlier in Section 6.2.3, the Whitehorse project was introduced as a way of developing

graphical editors for domain-specific languages. The underlying environments of the Whitehorse DSL

technologies are the Design Surface Framework (similar to GEF) and the Domain Model Framework

(similar to EMF) [52]. Both of these technologies form part of the Visual Studio DSL SDK, and are

not independent projects in the vein of GEF and EMF.

The shapes of model elements are represented according to the DslDesignerDiagram (DDiagram)

metamodel16. The diagram model instance is project-specific and implies that there is no common

shared notation metamodel between different Whitehorse projects; however the underlying model

instance and the visual representation are still stored separately. These shapes directly associate with

model elements in the underlying metamodel, so it is not possible to define a shared gallery of model

element shapes.

When developing a graphical editor using Whitehorse technology, the developer does not need to

concern themselves with concepts such as layout or printing, and thus can be considered a high-level

framework. The graphical component of Whitehorse does not directly support extensible templates,

and changes to the graphical editor must be performed manually in the .Net language.

6.3.5 Marama

Discussed earlier in Section 6.2.4, the Marama project is designed to provide all the aspects necessary

to develop a graphical model-driven environment. The key difference between Marama and GMF is

that the associations between the metamodel and the graphical environment, as well as the constraint

16No XML namespace is provided for this metamodel, but the .Net namespace for this metamodel is defined as mi-

crosoft.VisualStudio.Modeling.DslDesigner.DslDesignerDiagram.
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Requirement GEF GMF ArgoUML Whitehorse Marama

Language Java Java Java .Net Java

Runtime Environment Eclipse Eclipse ArgoUML Visual Studio Eclipse

Open Source X(EPL) X(EPL) X(New BSD) 7 X(MPL)

Version 3.5.2 2.2 0.28.1 2010 20101022

Diagram Technology Draw2D GEF GEF* DSF GEF

Model Source Java EMF JavaBeans DMF EMF

Shape Metamodel - gmfgraph - DDiagram Pounamu

Notation Metamodel n/a Notation PGML Custom MDiagram

Automatic Layout X X X X X[?]

Printing Support 7 X X X 7

Export Diagrams 7 X X X X

Extensible Generator 7 X 7 7 7

OpenBRR Rating 99 98 83 n/a 60

Average Quality 3.7 2.5 4.2 2.5

Average Support 3.5 4.0 1.0 1.0

Average Documentation 4.5 4.0 2.0 2.0

Average Adoption 4.0 3.5 2.0 3.0

Average Architecture 1.5 4.0 5.0 1.0

Table 6.2: Comparison of Graphical Environments

definitions, are all intended to be implemented visually. For example, the Marama shape designer in

Figure 6.4 adapted from Grundy et al. [124] allows for the graphical definition of a shape; this shape

can then be used by the Marama view definer to associate metamodel elements with defined shapes.

The Marama project was started before the GMF framework had been released, and the project

had to manually implement much of the functionality provided by GMF, such as validation decorators,

complex shapes and automatic layout algorithms [?]. At the time of writing, the primary source of

Marama documentation was its user manual [188]. The underlying metamodel for defining shapes,

tooling and views in Marama is Pounamu, and this metamodel is represented in terms of a collection of

DTD instances. The diagram notation metamodel MaramaDiagram17 (MDiagram) associates shapes

to model element instances for a given model instance, and is represented in terms of an Ecore model

instance [80].

The implementation of Marama through a combination of DTD and Ecore model instances high-

lights a strength of model-driven approaches, in that many different model sources can be integrated

together. However, it may be preferable in the future to migrate the shape metamodel to an Ecore rep-

resentation, as DTDs are not M3-compliant in the MDA, as discussed earlier in Section 3.1.5; Ecore

metamodels can provide stronger structural constraints than DTDs; and Eclipse-based tooling support

for Ecore is much stronger than those for DTDs.

6.3.6 Summary

A summary of these graphical environments is provided in Table 6.2. Along with the common com-

parison criteria discussed earlier in Section 6.1.1 and Section 6.1.2, each environment was evaluated

17This name is derived from the root element in the Marama diagram.ecore metamodel.
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on a number of additional criteria:

• Diagram Technology: What is the underlying technology used for rendering the graphical in-

terface – that is, the diagram editor – of the generated tool?

• Model Source: What is the underlying technology used for representing the model instances

that are being modified by the graphical editor?

• Shape Metamodel: Is there a metamodel defined for describing the shapes, or figures, of the

graphical editor with an abstracted model? As discussed at the beginning of this section, model-

driven graphical modelling environments will often have a separate metamodel for these shapes

in order to support a reusable gallery of shapes.

• Notation Metamodel: When a model instance is created graphically, there needs to be some

means of storing the diagrammatic elements of the visual representation, such as positions,

sizes, fonts and colours. Is the graphical notation instance data stored as a model instance

with a corresponding separate metamodel? That is, is this graphical environment implemented

according to a model-driven development approach? If a separate metamodel is defined, the

represented model instance does not have to be polluted with notation information.

• Automatic Layout: Does this environment provide built-in support for automatically laying out

diagrams? As discussed by [?], automatic layout algorithms can vastly improve the usability

and efficiency of creating visual model instances, but the implementation of these algorithms

can be difficult and would ideally be provided as part of the graphical environment.

• Printing Support: Does this environment provide built-in support for printing diagrams via a

printer?

• Export Diagrams: Does this environment provide built-in support for exporting diagrams to

image files? If the environment supports sending images to a printer, then implementation of

this feature should be straightforward.

• Extensible Generator: Is this graphical environment intended to be extended by developers?

Can the editor developer interact with or modify the logic and templates behind the generation

of the final editor? This extensibility can allow an editor developer to add functionality without

having to modify generated code.

With all of these factors considered, and also considering the earlier decision in Section ?? of

using EMF as a meta-modelling environment, the GMF framework within Eclipse was found to be the

most suitable environment for the development of a graphical editor for IAML.

While Marama is very similar to GMF, there are two major factors that influenced the decision

to use GMF instead: firstly, as an Eclipse Foundation project, GMF has more use in industry and a

higher quality of documentation, and this is reflected in the OpenBRR evaluations. Secondly, GMF

generated editors are designed to be extensible, which will simplify the implementation of custom

extensions (such as model completion, discussed later in Section 6.5).



6.4 Code Generation 163

6.4 Code Generation

Another design goal of the proof-of-concept implementation of IAML is the implementation of a code

generator to translate IAML model instances into executable web applications, forming an important

part of the evaluation in Chapter 8. Code generation is a model transformation which translates a

platform-independent model at a higher level of abstraction, into platform-specific models at lower

levels of abstraction, as discussed earlier in Section 3.1.7.

As with the rest of this chapter, there are a number of existing technologies for implementing

model-driven code generation, and this section will be used to discuss and evaluate these technolo-

gies for suitability. As our previous two technologies are both heavily dependent on the Eclipse en-

vironment, it must also be easy to integrate a selected code generation technology into an Eclipse

environment. This means that other environments such as Visual Studio and ArgoUML will not be

considered.

6.4.1 XSLT

As discussed earlier in Section 3.1.7, Extensible Stylesheet Language Transformations (XSLT) [301]

can be used to translate XML instances according to some simple translation rules. Since EMF models

are often represented as XML files, and can otherwise be exported into XMI, it would be possible to

define XSLT files to translate a given IAML model instance into a web application. A model instance

can be navigated using the XPath language [305], and queried using the XQuery language [306].

The XSLT approach may be executed according to an underlying metamodel if the source meta-

model is first translated to an XML Schema instance – for example, translating an XMI-serialised

model valid to an Ecore metamodel, into an XML model valid to an XML Schema. With regards to

EMF-based metamodels, XML Schema is less expressive than Ecore; some metamodel information

cannot be translated to XML Schema constructs, such as bidirectional references or target reference

types [279, pg. 179–235].

XSLT instances are serialised using the general-purpose machine-readable language XML, and are

consequently more verbose than domain-specific textual languages. This makes it difficult to develop

stylesheet instances without adequate tool support. XML stylesheets do not directly support third-

party extensibility, as all component stylesheets must be explicitly included and exist at the time of

compilation.

Since XSLT is simply a specification, there are many XML template engine implementations for

a number of languages, and stylesheets can be executed within any runtime environment. Providing

an OpenBRR evaluation against a range of these template engines is outside the scope of this thesis,

and no such evaluation will be provided. As discussed by Gottlob et al., four popular existing engines

include XALAN, Saxon, XT and IE6 [116].

6.4.2 JET

Java Emitter Templates (JET) [121], part of the Eclipse Model to Text (M2T) project, are a

template-based code generation technique. The syntax of JET templates are very similar to Java

Server Pages (JSP) [141], as illustrated in Listing 5; in fact, the template engine was built using source

code from the JSP implementation Tomcat [279, pg. 375]. JET may be used within an Eclipse envi-

ronment, but this environment is not necessary; JET may be used in a standalone environment, as the

only runtime requirement is EMF, which may also be provided in a standalone fashion.
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<%@ jet imports="java.util.* org.openiaml.model.model.*" %>

<%@ include file="copyright.javajetinc" %>

<% InternetApplication root = (InternetApplication) argument; %>

<html><body>

<h1>List of Pages</h1>

<ul>

<% for (Iterator i = root.getScopes().iterator(); i.hasNext(); ) {

Scope s = (Scope) i.next();

if (s instanceof Frame) { %>

<li><a href="<%=((Frame) s).getUrl()%>">"><%=s.getName()%></a></li>

<% }

} %>

</ul>

</body></html>

Listing 5: Internet Application code generation using a JET template

JET templates are evaluated against instances of plain old Java objects (POJOs) [151] – allowing

them to interact directly with Java code – and can also be used to iterate over XML data. Consequently,

Java is both the navigation and query languages used in JET. JET templates also can import existing

libraries of templates, known as taglibs, to extend the functionality of the code generator.

JET templates can also be extended by third parties through runtime @include directives. To

generate Java source code from metamodels, the Eclipse Modeling Framework uses JET templates in

this fashion, and these generated source codes may be extended by third parties [279, pg. 379]18.

6.4.3 openArchitectureWare

The openArchitectureWare project (OAW) began as an independent implementation of various model-

driven technologies [76]. This included a code generator (OAW Xpand19), a textual model defintion

language (Xtext), a model extensibility framework (Xtend) and an OCL-like suite of model checks

(Checks). Each of these technologies are written in Java, and require the Eclipse environment at

runtime. These technologies are internally based on EMF model instances, and allows code generation

templates to be developed using an underlying metamodel.

OAW Xpand uses a custom language for defining templates, as in Listing 6; the expression sub-

language is “a syntactical mixture of Java and OCL” [76], which can also be used to navigate through

the model instance separately from Xpand. OAW Xpand supports the concept of dynamic templates,

which supports a form of aspect-oriented programming. In particular, an existing template can be

overridden or extended by a new third party template.

Since this research was started, all development focus on openArchitectureWare has essentially

ceased, and the four subprojects have moved into new Eclipse Foundation projects. Consequently, the

OpenBRR evaluation of OAW Xpand is not as positive as the evaluations of the other code generation

technologies, as there has been no recent development activity.

18Within the proof-of-concept implementation of IAML, the JET templates used by EMF are extended to enable XSD

references, as discussed by resolved issue 251: XSD References cause GMF editors to crash with transaction exception.
19In this thesis, the openArchitectureWare implementation of Xpand is named OAW Xpand in order to distinguish this

implementation from the Eclipse implementation, which is simply named Xpand as in the next section.

http://code.google.com/p/iaml/issues/detail?id=251
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«IMPORT iaml»

«EXTENSION template::GeneratorExtensions»

«DEFINE root FOR model::InternetApplication»

«EXPAND Copyright::copyrightTemplate»

<html><body>

<h1>List of Pages</h1>

<ul>

«FOREACH scopes.typeSelect(model::visual::Frame) AS frame»

<li><a href="«frame.url»">«frame.name»</a></li>

«ENDFOREACH»

«ENDDEFINE»

Listing 6: Internet Application code generation using an OAW Xpand Template

6.4.4 Xpand

As another part of the Eclipse M2T project, Xpand [121] started as an Eclipse-branded branch of the

OAW Xpand component of openArchitectureWare. It appears that the branch was started to satisfy

the model-to-text code generation requirement of GMF, as the GMF code generation templates to

generate graphical editors could be extended by third parties to add additional functionality to the

generated graphical editors.

Since its integration into Eclipse, Xpand has seen a number of improvements, particularly in terms

of standardisation, functionality and performance. With the release of GMF 2.2, Xpand was extended

to support QVTo model queries [45]. An improved code editor has also been released, along with

significant performance improvements. The underlying expression remains a mix of Java and OCL,

as discussed in the previous section. As part of the Eclipse Foundation-supported ecosystem, Xpand

is still under active development with a wide range of support options.

6.4.5 Summary

A summary of this investigation is provided in Table 6.3. As discussed earlier in Section 3.1.8, QVT

and ATL are omitted as neither technology supports model-to-text transformations, which is a re-

quirement for code generation. Along with the common comparison criteria discussed earlier in Sec-

tion 6.1.1 and Section 6.1.2, each technology was evaluated on a number of additional factors:

1. Navigation Language: Within a template, what language is used to navigate through a model

instance? That is, what language is used to browse through the model instance graph?

2. Query Language: Within a template, what language is used to query a model instance within

expressions? That is, what language is used to translate a model instance into an expression?

If these two languages are different, each language may be simpler and easier to test, but there

may be more of a learning curve for new developers.

3. Underlying Metamodel: What is the underlying metamodel for the code generation templates?

The increased expressibility and enforced structure of a richer metamodel such as EMF may

make it easier to write code generation templates, when compared to a lower-level metamodel

such as Java.
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Requirement XSLT JET OAW Xpand Xpand

Language XML Java Java Java

Runtime Environment n/a Standalone Eclipse Eclipse

Open Source n/a X(EPL) X(EPL) X(EPL)

Version 2.0 0.8.2 4.3.1 1.0.0

Navigation Language XPath Java Java/OCL Java/OCL

Query Language XQuery Java Java/OCL Java/OCL

Underlying Metamodel XML Java EMF EMF

Third party extensibility 7 X X X

OpenBRR Rating n/a 105 94 104

Average Quality 4.5 3.7 3.0

Average Support 4.0 3.0 4.0

Average Documentation 4.0 2.5 5.0

Average Adoption 3.0 4.0 3.0

Average Architecture 4.0 4.0 4.0

Table 6.3: Comparison of Code Generation Environments

4. Third party extensibility: Does the technology allow third parties – that is, the model developers

themselves – to extend the provided code generation templates? This can improve developer

usability significantly, as the developer does not need to access the source code of the modelling

environment to make changes, but could instead just add extensions to the given environment.

With respect to these technologies, the decision was made to use the Xpand framework to im-

plement code generation within IAML. The proof-of-concept implementation uses the OAW Xpand

project, as the Eclipse-branded Xpand project had not yet been announced when work on the proof-

of-concept implementation began.

Finally, it must be noted that none of these evaluated approaches natively support any form of

round-trip engineering of model transformations, as discussed earlier in Section 3.1.8. It may be

possible to implement round-trip engineering support in a model-to-text transformation implementa-

tion20, and this research remains an important area of future work. This limitation will not impact on

the proof-of-concept implementation of IAML however, as round-trip engineering is not a design goal

of this thesis.

6.5 Model Completion

Discussed earlier in Section 3.2, model completion is the automated process of taking an incomplete

base model and adding elements to this model to create an intended model according to sensible

default rules. Model completion is particularly important for the implementation of Wires as discussed

in Section 4.9.2, as this means the logic and semantics behind a Wire can be implemented within an

additional model completion layer, and the underlying metamodel and resulting code generation layers

can remain unchanged.

20For example, change models or trace models have already been used by GMF to support traceability on its model-to-

model transformations.



6.5 Model Completion 167

There are a number of different technologies that may be used to implement model completion

rules. Almost any language that supports some form of inference and logic can be used; this includes

rule engines such as Drools [277], Jena [196] and Jess [100]. The Java specification request JSR-94

[272] covers the definition of a Java rule engine API, and most commercial rule engines are imple-

mentations of this standard. In this section, these three rule engines will be evaluated by implementing

the default checkbox rule introduced earlier in Section 3.2.2.

As model completion is designed as a model transformation operating within the same source

and target metamodels, model-to-model transformations may also be used to implement model com-

pletion. However this section will not deal with the implementation of model completion in these

general-purpose transformation engines, as it is expected that a dedicated rule engine grammar and

implementation will provide better performance and expressibility. For example, the three rule en-

gines discussed here utilise the Rete algorithm [277] in order to improve performance, whereas this

approach is novel in existing model transformation engines [?]. Similarly, these rule engines may be

used to implement model-to-model transformations, but this discussion is outside the scope of this

thesis.

6.5.1 Jena

Jena is an open source Java framework for building semantic web applications by providing a number

of RDF-based APIs. Internally, knowledge is represented as an RDF graph according to the W3C

recommendations for the Semantic Web [196]. This graph is then extended with components such

as the Semantic Web query language RDQL [196, 270] and a hybrid forward/backwards chaining

inference engine.

Since Jena is focused on expressing and evaluating RDF triples, it is necessary to translate a model

instance into an RDF format in order to implement model completion rules using Jena. This can be

done manually, however the translation of a model instance into an RDF format will lose the semantic

information of the underlying metamodel – such as type hierarchies – unless this information is also

translated.

The Web Ontology Language (OWL) [308] is a standard for representing the higher-level knowl-

edge of data, and in particular can be used to represent a metamodel of a model instance. The emftriple

project can be used to translate Ecore models into OWL models [136], which can then be loaded as

part of an RDF-based model completion process.21

There are a number of constraints for the translation of an Ecore model into the OWL format using

emftriple. The tool assumes that there are unique names for all classes, properties and enumerations in

the metamodel; and the tool struggles with external references to Ecore metamodels located within the

project22. However, future versions of the tool may resolve these problems to support an automated

Ecore translation.

Once the Ecore model has been translated into an OWL format, and a model instance represented

in EMF is translated into an RDF format, the Jena inference engine can be used as in Listing 7. The

makeSkolem builtin predicate allows for a new blank node to be generated based on the uniqueness of

a particular set of parameters, and is essential to a Jena implementation of model completion.

21TODO: The inference of EMF-based models using Jena is pretty novel. Should the source code be pro-

vided in an appendix, or an online article, or a publication, or similar? The current implementation is on SVN at

http://code.google.com/p/iaml/source/browse/branches/2009-08-owl/org.openiaml.model.owl/src/org/openiaml/model
22In particular, all references to the Eclipse XSD metamodel had to be removed before the ontology could be generated

successfully.

http://code.google.com/p/iaml/source/browse/branches/2009-08-owl/org.openiaml.model.owl/src/org/openiaml/model/owl/tests/TechnologyChapterTest.java?spec=svn2573&r=2573
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[exampleModelCompletion:

(?P rdf:type iaml:BooleanProperty)

(?C iaml:children ?P)

noValue(?E iaml:for ?P)

makeSkolem(?A, ?P, ?C)

->

(?A rdf:type iaml:Checkbox)

(?A iaml:id ’generated’)

(?A iaml:isGenerated ’true’)

(?A iaml:for ?P)

(?C iaml:children ?A)

]

Listing 7: Example rule implementation in Jena

However, there is no easy way to implement the insertion cache concept using Jena rules; that is,

the new node created by makeSkolem is inserted into the model immediately. Since model completion

rules are orderless – that is, the order in which they are executed must not matter – the lack of an

insertion cache is not fatal for a Jena-based implementation. However, a Jena-based implementation

of model completion may need to define a new makeCachedSkolem function in order to correctly

satisfy the requirements of model completion.

The Jena framework supports the integration of additional rule engines in order to evaluate model

instances, such as Pellet [276], Racer [?] and Fact++ [?]. These engines can provide a limited amount

of additional functionality and improved performance; however this thesis will only evaluate the de-

fault Jena reasoner.

6.5.2 Jess

Jess is a closed-source rule engine written in Java, which is designed to operate both on facts and

POJOs. As discussed at the beginning of this chapter, a closed-source component would make the

proof-of-concept implementation difficult to redistribute, and would also hinder the implementation

of rule engine extensions, such as the insertion cache. Jess was a driving force behind the design

of JSR-94, and is the reference implementation for the original specification [272]. An R2ML/Jess

translator is also available [219].

The underlying model that Jess operates within is sets of facts, which can be inserted and retracted

from within the execution environment. Java objects can also be inserted as facts into the rule engine,

and if these objects are also JavaBeans (i.e., POJOs), then the bean properties can also be accessed

directly as facts. However, the structure of inserted POJOs must be defined manually as part of the

rules, as illustrated in Listing 8. Consequently model completion rules can be difficult to implement

in Jess if the underlying objects are based on EMF.

Critically, Jess does not currently support multiple interface inheritance [99], where a class can

have more than a single supertype. This means that there are certain classes of rules and type hier-

archies that simply cannot be described using Jess; and the sample model completion rule proposed

by Wright and Dietrich [324] cannot be implemented in Jess without first flattening the inheritance

hierarchy.
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(deftemplate IamlFactoryImpl (declare (from-class IamlFactoryImpl)))

(deftemplate BooleanPropertyImpl (declare

(from-class BooleanPropertyImpl)))

(deftemplate CheckboxImpl (declare (from-class CheckboxImpl)))

(deftemplate PageImpl (declare (from-class PageImpl)))

(defrule model-completion-example

"Example rule of model completion."

(BooleanPropertyImpl (OBJECT ?property))

(PageImpl (OBJECT ?container))

(IamlFactoryImpl (OBJECT ?factory))

(test ((?container getChildren) contains ?property))

(test (eq (?property getEditor) nil))

=>

(bind ?o (?factory createCheckbox))

(?o setFor ?property)

(?o setIsGenerated TRUE)

((?container getEditors) add ?o)

(add ?o)

)

Listing 8: Example rule implementation in Jess

6.5.3 Drools

Drools, also known as JBoss Rules, is an open source business rule management system and inference

rule engine implemented in Java [277]. Inference rules are evaluated using an enhanced implementa-

tion of the Rete algorithm [277].

The underlying model that Drools operates within is simple POJOs, making it easy to integrate

into an existing Java-based software system. This also means that all of the metamodel properties and

operations are accessible to a Drools rule. Reflection is also possible using the EMF API.

Along with Jena, the design and implementation of R2ML was heavily supported by Drools [112],

and thus the translation of R2ML rules to Drools rules and vice versa is well supported [219]. The

Drools engine also supports an implementation of the JSR-94 specification.

In Drools, a model completion rule is implemented as an inference rule, as in Listing 9, as de-

scribed in Wright and Dietrich [324]. In particular, the use of an insertion cache assists in the imple-

mentation of the stratification technique of model completion, where newly created model elements

are inserted into a cache before being reinserted into the working memory.

6.5.4 Summary

A summary of this investigation is provided in Table 6.4. Along with the common comparison criteria

discussed earlier in Section 6.1.1 and Section 6.1.2, each technology was evaluated on a number of

additional factors:

1. Uses POJO model: Does the underlying model used by the rule engine support POJOs? That is,

can the rule engine be inserted into an existing Java application without any additional transla-

tion steps necessary? Since EMF model instances are accessible as POJOs, this means that the

rule engine can be integrated with an EMF-based modelling environment easily. Any translation
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rule "Example rule"

when

p : BooleanProperty( )

not ( Editor ( for == p ))

then

Checkbox c = handler.generatedCheckbox(p);

handler.setFor(c, p);

cache.add(c, drools);

end

Listing 9: Example rule implementation in Drools, adapted from Wright and Dietrich [324]

Requirement Jena Jess Drools

Language Java Java Java

Runtime Environment Standalone Standalone Standalone

Open Source X(BSD) 7 X(Apache)

Version 2.6.4 7.1p2 4.0.7

Uses POJO model 7 X X

Multiple interface inheritance X 7 X

R2ML Translator X X X

Custom Rule DSL 7 7 X

OpenBRR Rating 99 n/a 101

Average Quality 3.8 2.3

Average Support 2.0 4.5

Average Documentation 2.5 5.0

Average Adoption 3.0 4.0

Average Architecture 4.0 5.0

Table 6.4: Comparison of Rule Engine Environments

steps necessary will reduce the performance of model completion, and impact the integration

and traceability of the environments.

2. Multiple interface inheritance: Can the rules use multiple interface inheritance? The IAML

metamodel has heavy usage of both multiple interface inheritance. If a rule engine cannot sup-

port multiple interface inheritance, a metamodel can be extended to single interface inheritance,

but this indicates additional development effort that may not be necessary.

3. R2ML Translator: Does a translator exist to translate R2ML rules [111] into this language, and

vice versa? An R2ML translator may permit the automatic translation of rules written in one

rule engine into another rule engine, improving interoperability.

4. Custom Rule DSL: Does this rule engine directly support the definition of a domain-specific lan-

guage for model completion rules? By providing a DSL for a given set of rules, rule developers

can express rules more easily. This is not strictly necessary, as a domain-specific language can

be written outside of the scope of the rule engine.
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Each of these engines were found to be expressive enough to describe many different types of

rules. The UServ Business Rules Model 2005 [112] provides a “common benchmark” set of rules

which may be implemented to compare language expressiveness, and each of these evaluated rule

engines satisfies these requirements [112, 219].

Even though there are a large number of rule engines in production, there are very few reliable

benchmarks published on these engines, making it difficult to compare engines in terms of perfor-

mance. This may be due to the fact that rule engine performance depends heavily on the type of rules,

the size of the rules, and the size of the input data sets. The UServ benchmark is only concerned with

expressiveness, and cannot be used to compare performance characteristics.

In IAML, the decision was made to use the Drools rule engine in order to implement the model

completion framework. As the engine was open source, it was fairly straightforward to implement the

concepts behind model completion (such as stratification), as discussed by Wright and Dietrich [324].

This work evaluated performance metrics against a test suite of sample input models, and a wide range

of model completion rules, and found that Drools was a suitable target platform to implement model

completion.

6.6 Model Instance Verification

As discussed earlier in Section 3.4, model instance verification is the process of evaluating syntacti-

cally correct model instances against constraints to verify they are correct with respect to the intended

function of the modelled domain. Each of these verification rules may be implemented in a different

technology; for example, the structural definition of the language – which includes a type of model

instance verification – is implemented as part of the metamodelling environment, whereas reference

cycles can be detected using a different framework.

In this section, a simple example constraint will be used to illustrate the design and expressibility

of each verification language. The constraint infinitely redirects is a constraint that identifies web

application pages that, when visited, would continually redirect the user in a non-terminating loop.

This constraint may be implemented within both functions- or relations-based verification languages,

and may also be evaluated using a model checking approach.

6.6.1 Drools

As discussed in the previous section, Drools was evaluated as a potential implementation of the model

completion concept. This same approach can also be used to implement model instance verification,

by using inference to infer constraint violations. Likewise with the implementation of Drools used

in model completion, the constraints can directly evaluate the POJO objects of the model instance

under evaluation. Drools does not natively support any form of transitive closure, so this must be

implemented manually with the appropriate guards to prevent an infinite loop.

The implementation of infinitely redirects in Drools is provided in Listing 17. The first rule defines

the inference of a transient property NavigatesTo with respect to two Frames; and the second rule

defines that the property is transitive. The final rule defines how constraint verification occurs, and

also provides information about the source of the violation. Drools does not support the creation of

transient facts, so a separate verification metamodel needs to be created and defined; however, this

metamodel can be entirely separate of the metamodel under evaluation.
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rule "Frame navigating to another Frame on access"

when

access : Event ( )

p : Frame ( onAccess == access )

p2 : Frame ( eval(p != p2) )

navigate : ECARule ( from == access, to == p2 )

not ( NavigatesTo ( from == p, to == p2 ))

then

NavigatesTo navigatesTo = factory.createNavigatesTo();

navigatesTo.setFrom(p);

navigatesTo.setTo(p2);

insert(navigatesTo);

end

rule "NavigatesTo is transitive"

when

p1 : Frame ( )

p2 : Frame ( eval(p1 != p2) )

n : NavigatesTo( from == p1, to == p2 )

p3 : Frame ( eval(p2 != p3) )

n2 : NavigatesTo ( from == p2, to == p3 )

not ( NavigatesTo ( from == p1, to == p3 ))

then

NavigatesTo navigatesTo = factory.createNavigatesTo();

navigatesTo.setFrom(p1);

navigatesTo.setTo(p3);

insert(navigatesTo);

end

rule "An infinitely redirecting loop"

when

p : Frame ( )

n : NavigatesTo ( from == p, to == p )

not (Violation ( source == p ))

then

Violation violation = factory.createViolation();

violation.setSource(p);

violation.setReason("An infinitely redirecting loop");

verify.failed(violation);

insert(violation);

end

Listing 10: Implementation of infinitely redirects in Drools
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[redirects1:

(?P rdf:type iaml.visual:Frame)

(?E rdf:type iaml:EventTrigger)

(?P iaml:onAccess ?E)

(?P2 rdf:type iaml.visual:Frame)

(?W rdf:type iaml:ECARule)

(?W iaml:from ?E)

(?W iaml:to ?P2)

->

(?P eg:redirectsTo ?P2)

]

[redirects2:

(?P rdf:type iaml.visual:Frame)

(?P2 rdf:type iaml.visual:Frame)

(?P3 rdf:type iaml.visual:Frame)

(?P eg:redirectsTo ?P2)

(?P2 eg:redirectsTo ?P3)

->

(?P eg:redirectsTo ?P3)

]

[ruleInfiniteRedirect: (?v rb:validation on()) ->

[ (?X rb:violation error(’violation’, ’infinite redirect’, ?X)) <-

(?X rdf:type iaml.visual:Frame)

(?X eg:redirectsTo ?X)

]

]

Listing 11: Implementation of infinitely redirects in Jena

The Drools rule engine does not natively support the derivation trace for a given model element,

however the rule engine can be extended to support this scenario. As the implementation of Drools

is provided as an Eclipse project, it would be relatively straightforward to implement Drools-based

model verification within an Eclipse-based development environment.

6.6.2 Jena

Similarly to Drools, Jena was also evaluated for model completion in Section 6.5.1, and similarly can

also be used to implement model instance verification. Jena’s inference engine explicitly supports

the definition of special model verification rules, which can be selectively enabled or disabled [252].

Likewise with the implementation of model completion, it is necessary to translate the metamodel into

an OWL representation [308] using the previously-introduced emftriple project [136], and translate the

model instance into an RDF implementation.

The implementation of infinitely redirects is provided in Listing 11. Similarly to the implemen-

tation of the constraint in Drools, the rule (redirects1) defines the inference of a transient property

redirectsTo. The second rule (redirects2) defines that the property is transitive, as Jena does not di-

rectly support a higher-order transitivity operator on relations. The final rule enables the validation

engine, and defines the constraint itself.

Once a constraint violation has been detected by Jena, it is possible to obtain a derivation trace to
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the source of the violation; however, since the source models had to be translated from their original

representations, it would require some development effort to reunite the derivation trace with the

source models.

6.6.3 OWL 2 Full

A verification constraint can also be represented using OWL 2 [308], which has native support for

concepts such as transitive closure and inference, by using class equivalence to select constraint viola-

tions. To be more specific, the metamodel designer would define a new class, defined as equivalent to

all violating instances of a certain constraint. These constraints could then be combined with the gen-

erated metamodel ontology, and the exported RDF graph of the model instance, and evaluated using

an ontology reasoner to identify the constraint violations.

One possible implementation of the infinitely redirects constraint is provided in Listing 12. This

constraint is defined through equivalence of a transitive property instantRedirectTo. However, since

selecting this property requires a self restriction on a transitive property with a cardinality constraint,

this falls outside the bounds of OWL 2 DL, and thus this ontology is an OWL 2 Full ontology.

Unfortunately, at the time of writing there were no implementations of an OWL 2 Full ontology

reasoner; furthermore, OWL 2 Full ontologies has been shown to be generally undecidable [215], and

it is possible that no implementations will ever exist in the future. Consequently it is not possible to

use this technology as a verification engine for the proof-of-concept implementation of IAML.

6.6.4 CrocoPat

CrocoPat is a relational reasoner written in C++ [27], developed and released under the LGPL. It uses

Binary Decision Diagrams to efficiently infer information, and natively supports higher-order logic

through existential EX, universal quantification FA and transitive closure TC operators; properties can

also be defined recursively. It has a well-defined axiomatic semantics, but obtaining the derivation

trace is not currently possible. CrocoPat was initially designed to evaluate software models for de-

sign patterns, and was found to be much faster than alternative approaches, including Prolog and a

commercial relational database [27].

Since CrocoPat is written in C++, the reasoner does not yet directly support the interaction with

Java objects or POJOs; as a result, a Java object must first be serialised into a textual format according

to the RSF/RML languages. This representation can then be concatenated with a rule file and evaluated

by CrocoPat. There is no native support for typing, so a type system has to be manually implemented

if it is necessary.

The implementation of infinitely redirects in CrocoPat is provided in Listing 13. The first definition

defines the inference of a transient property of RedirectsTo with respect to two Frames; and the second

rule defines that the property is transitive. The third rule defines the constraint violation through

inference of this property, and finally the reasoner is instructed to find all instances of that violation.

CrocoPat does not natively support the derivation trace for a given property, but it is possible to

add this through an extension of the reasoner. As the implementation of CrocoPat is provided as a

C++ project, some development effort is necessary in order to implement CrocoPat-based verification

within an Eclipse-based environment.
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// namespaces omitted

Ontology(<http://openiaml.org/verification/2009/infiniteRedirect.owl>

Import(<http://openiaml.org/model0.5>)

// some classes omitted

EquivalentClasses(InfiniteRedirectFrame ObjectIntersectionOf(

ObjectExistsSelf(instantRedirectTo) visual:Frame))

SubClassOf(InfiniteRedirectFrame iaml:Scope)

SubClassOf(InfiniteRedirectFrame iaml:VisibleThing)

SubClassOf(InfiniteRedirectFrame visual:Frame)

EquivalentClasses(AccessEventTrigger ObjectIntersectionOf(DataHasValue(

iaml:name "access") iaml:EventTrigger))

// some properties omitted

TransitiveObjectProperty(instantRedirectTo)

ObjectPropertyDomain(instantRedirectTo visual:Frame)

ObjectPropertyRange(instantRedirectTo visual:Frame)

ObjectPropertyDomain(navigatesToFrame iaml:ActionEdge)

ObjectPropertyRange(navigatesToFrame visual:Frame)

SubObjectPropertyOf(SubObjectPropertyChain(iaml:outEdges isActionEdge

InverseObjectProperty(isActionEdge)) onAccessNavigate)

SubObjectPropertyOf(SubObjectPropertyChain(iaml:to isFrame

InverseObjectProperty(isFrame)) navigatesToFrame)

SubObjectPropertyOf(SubObjectPropertyChain(iaml:outActions toFrame)

eventToFrame)

SubObjectPropertyOf(SubObjectPropertyChain(iaml:to isFrame

InverseObjectProperty(isFrame)) toFrame)

// defines the verification constraint

SubObjectPropertyOf(SubObjectPropertyChain(iaml:eventTriggers

isAccessEventTrigger InverseObjectProperty(isAccessEventTrigger)

onAccessNavigate navigatesToFrame) instantRedirectTo)

)

Listing 12: Implementation of infinitely redirects in OWL 2 Full
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RedirectsTo(a, b) :=

Frame(a) & a != "null" &

EX(e, EventTrigger(e) &

onAccess(a, e) &

Frame(b) & b != "null" &

EX(w, ECARule(w) & trigger(w, e) & target(w, b)));

RedirectsTo(a, b) :=

Frame(a) & Frame(b) & TC(RedirectsTo(a, b));

InfiniteRedirect(p) :=

Frame(p) & p != "null" &

RedirectsTo(p, p);

PRINT ["Infinite redirection"] InfiniteRedirect(p);

Listing 13: Implementation of infinitely redirects in CrocoPat

abstract sig Frame {

redirectsTo : set Frame

}

one sig Frame_page1 extends Frame { }{ redirectsTo = Frame_page2 }

one sig Frame_page2 extends Frame { }{ redirectsTo = Frame_page3 }

// ...

assert test {

no p : Frame | p in p.^redirectsTo

}

check test for 3

Listing 14: Implementation of infinitely redirects in Alloy

6.6.5 Alloy

Alloy [149] is a specification language for assisting in the design and specification of software and

software models, implemented using Java and released under the MIT license. Its intended use is in

the development of robust modelling language that conform to a given suite of assertions, by trying

to derive model instances that are invalid according to those assertions (known as counter-examples).

Alloy can also be used to discover constraint violations for a single given model instance, although

this is not its original intent.

Since Alloy is designed for the specification of languages, it does not directly support other sources

of models, such as POJOs; models and metamodels must first be translated into the Alloy specification

language. The language does not support multiple inheritance, however the Variant design pattern [38]

can be used to emulate this design with single inheritance. It is difficult to define primitive data values

such as strings and integers; these have to be translated manually into singleton world facts. Finally,

Alloy does not support recursive functions, however in many situations these can be emulated using

the transitive closure operator .* [62].

There are a number of ways in which the infinitely redirects constraint can be implemented in

Alloy; a simple and efficient implementation is provided in Listing 14. In this approach, most of
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// initial def

cached List[model::visual::Frame] redirectsTo(model::visual::Frame this) :

onAccess.listeners.to.typeSelect(model::visual::Frame);

// we need to keep track of which nodes we have visited

cached Boolean doesRedirectTo(model::visual::Frame a,

model::visual::Frame b, Set[model::visual::Frame] visited) :

visited.contains(b) || a.redirectsTo().exists( c | c == b ||

doesRedirectTo(c, b, (visited.add(a)).toSet()));

// definition

infiniteRedirect(model::visual::Frame this) :

doesRedirectTo(this, this, {}.toSet());

Listing 15: Implementation of infinitely redirects in openArchitectureWare: Xtend

extension validation::InfiniteRedirect;

context model::visual::Frame ERROR "Infinite redirection":

!infiniteRedirect();

Listing 16: Implementation of infinitely redirects in openArchitectureWare: Checks

the components of the underlying IAML metamodel are ignored, and only the essential structure is

defined. Some properties, such as redirectsTo, are pre-calculated by the translation step; this greatly

simplifies the computational requirements of the Alloy verification step.

One powerful feature of Alloy is that it natively supports the interactive visualisation of a constraint

violation. The integration of this visualisation into a model verification approach would be ideal to

illustrate the reasoning behind a specific counter-example. Because Alloy is designed to search for

possible counter-examples for a given range of constraints, Alloy can be considered a model checking

language.

6.6.6 openArchitectureWare

openArchitectureWare (OAW) was previous discussed in Section 6.4.3 as an implementation of a code

generation engine. The framework also supports the definition of constraints through the combination

of the Xtend language for transient model extensions, and the Checks language for constraint defini-

tions, which use an expression language similar to Java and OCL [76].

Likewise with the implementation of OAW used for code generation, the constraints can directly

evaluate the POJO objects of the model instance under evaluation. OAW does not natively support

any form of transitive closure, and has difficulty supporting recursive constraints; inferred extensions

should be explicitly labelled as cached, and some recursive definitions will result in an infinite loop.

Nevertheless, the implementation of infinitely redirects is provided in Listings 15 and 16. The first

model extension defines a property redirectsTo which lists the Frames that a given Frame may directly

redirect to; the second model extension then defines a property doesRedirectTo, which is true if a given

Frame will redirect to another Frame. The third model extension infiniteRedirect defines a property

for which infinite redirection can be detected. Finally, the constraint definition in Checks is used to
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define the constraint error message.

The default implementation of OAW does not support the derivation trace of inferred properties.

However, if the OAW framework is already integrated into a project in terms of a code generation

framework, then it is trivial to add these additional verification constraints to the code generation

process. Consequently, OAW may be the ideal platform for implementing property-based constraints,

as introduced earlier in Section ??.

6.6.7 OCL

The Object Constraint Language (OCL) [230] is a language recommended by the OMG to define

constraints on model instances, and includes support for the definition of operations, and the derivation

of attributes and associations. The OCL language does not support the creation of transient properties

– the only type of inference supported is derivation – and therefore a separate verification metamodel

must be supplied, or the original metamodel must be extended with additional verification properties.

The language itself is functions-based, and supports the higher-order logic of function aggregation

through the iterate expression [225, pg. 211].

The OCL standard is platform-independent, and there are many different implementations of the

language. Only two implementations will be considered in this section: the EMF Validation Frame-

work, and the Dresden OCL toolkit. Since the OCL standard does not support property inference, the

infinitely redirects constraint needs to be implemented using operations as listed in Listing 18. These

constraints are derived from the implementation of the acyclical class inheritance constraint of UML

class diagrams, as discussed earlier in Section 3.1.9.

EMF Validation Framework with OCL

The EMF Validation Framework [73] provides a number of methods to define constraints for a given

EMF model. One approach is to define the constraints as part of the metamodel itself [279, pg. 549–

565]; this is ideal for simple constraints such as properties, as the constraints are included in the

generated metamodel code itself. However, this approach does not automatically translate the con-

straints into executable code; for example, an OCL constraint will not automatically call the Eclipse

OCL implementation. Consequently, this approach will not be considered in this section.

Alternatively, the constraints can be provided by a constraint adapter, allowing the model devel-

oper or other tools to selectively execute the constraints. This is ideal for more advanced constraints

that may be more computationally intensive. This adapter can explicitly define that a given constraint

is written in OCL, and such a constraint will then be executed by the Eclipse OCL implementation.

However, constraints defined in this way are not fully functional OCL specifications; they can

only be used to check invariant-based constraints that are not recursive, and cannot be used to specify

operation bodies. The recursive OCL constraints introduced earlier in Listing 18 therefore cannot be

implemented using this adapter approach. Since the EMF Validation framework is a member of the

Eclipse ecosystem, it is well-supported with rich documentation.

Dresden OCL

The Dresden OCL2 toolkit [?] implements the OCL 2.2 language [230] and may be executed within

a standalone environment, or integrated into another modelling environment. OCL specifications are
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rule "Frame navigating to another Frame on access"

when

access : Event ( )

p : Frame ( onAccess == access )

p2 : Frame ( eval(p != p2) )

navigate : ECARule ( from == access, to == p2 )

not ( NavigatesTo ( from == p, to == p2 ))

then

NavigatesTo navigatesTo = factory.createNavigatesTo();

navigatesTo.setFrom(p);

navigatesTo.setTo(p2);

insert(navigatesTo);

end

rule "NavigatesTo is transitive"

when

p1 : Frame ( )

p2 : Frame ( eval(p1 != p2) )

n : NavigatesTo( from == p1, to == p2 )

p3 : Frame ( eval(p2 != p3) )

n2 : NavigatesTo ( from == p2, to == p3 )

not ( NavigatesTo ( from == p1, to == p3 ))

then

NavigatesTo navigatesTo = factory.createNavigatesTo();

navigatesTo.setFrom(p1);

navigatesTo.setTo(p3);

insert(navigatesTo);

end

rule "An infinitely redirecting loop"

when

p : Frame ( )

n : NavigatesTo ( from == p, to == p )

not (Violation ( source == p ))

then

Violation violation = factory.createViolation();

violation.setSource(p);

violation.setReason("An infinitely redirecting loop");

verify.failed(violation);

insert(violation);

end

Listing 17: Implementation of infinitely redirects in Drools
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context Frame::allRedirectsTo() : Set(Frame) body:

allRedirectsTo = self.redirectsTo()->union(

self.redirectsTo()->collect(p | p.allRedirectsTo())

context Frame::redirectsTo() : Set(Frame) body:

redirectsTo = if self.onAccess->oclIsUndefined() then OrderedSet{}

else self.onAccess.listeners.to->collect(p | p.oclIsKindOf(Frame))

endif

context Frame inv:

not self.allRedirectsTo()->includes(self)

Listing 18: Implementation of infinitely redirects in OCL

LTLSPEC

G ((!(navigation_running = 1 -> !(F navigation_finished = 1)))

U navigation_running = 0)

Listing 19: Implementation of infinitely redirects in LTL

defined separately from the definition of the metamodel, allowing for constraint verification to occur

independently of the model instance.

The latest release of the toolkit – formerly called Dresden OCL for Eclipse – includes integra-

tion within the Eclipse environment and allows OCL constraints to execute on a variety of models,

including EMF-based model instances and POJOs. The Dresden OCL toolkit also forms the basis of

ArgoUML’s support for verifying specified OCL constraints [285].

6.6.8 NuSMV

NuSMV is a symbolic model checker written in C [48] which supports the evaluation of specifications

written in the CTL and LTL specification languages [142]. As opposed to both CrocoPat and Alloy,

the definition of a NuSMV specification is implemented as a series of states; the model checker then

navigates through these states to try and find counter-examples. Once a counter-example has been

identified, the derivation trace is provided to the user in a textual format of state changes. NuSMV

supports a concept similar to threads by defining modules, which can be executed in any order ac-

cording to a fairness algorithm; such a concept may make it easier to test the asynchronous nature of

RIAs.

Since a NuSMV specification is based around the definition of states and their transitions, a con-

siderable amount of effort must first be expended to translate a given model instance into a system

specification. This often involves the definition of system functionality; for example, a web applica-

tion may define the set of available web pages, buttons that may be clicked, current browser location,

state-based functionality of operations and so on. In the domain of web applications, the functionality

of the web browser itself would have to be emualated. As a result, these specifications are unlike any

of the other approaches mentioned in this chapter, as NuSMV does not interact with types or model

instances, and cannot infer any information.

The implementation of the specification for the infinitely redirects constraint in LTL, which NuSMV

may then evaluate, is provided in Listing 19. This specification states that in all situations (G), we must
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Requirement Jena OWL Drools CrocoPat OAW

Language Java n/a Java C++ Java

Runtime environment Standalone n/a Standalone Standalone Eclipse

Open source X(BSD) n/a X(Apache) X(LGPL) X(EPL)

Version 2.6.4 2.0 4.0.7 2.1.4 4.3.1

Uses POJO model 7 7 X 7 X

Supports subtypes X X X 7 X

Derivation cause X X Manual Manual 7

Implementation X 7 X X X

Transient properties X X 7 X X

Lver expressiveness Relations Relations Functions Relations Functions

Higher-order logic 7 X 7 X 7

Supports inference X X X X X

Recursive rules X X X X Manual

Model checking 7 7 7 7 7

OpenBRR rating 99 n/a 101 77 94

Average Quality 3.8 2.3 3.0 3.7

Average Support 2.0 4.5 1.0 3.0

Average Documentation 2.5 5.0 3.0 2.5

Average Adoption 3.0 4.0 2.0 4.0

Average Architecture 4.0 5.0 1.0 4.0

Table 6.5: Comparison of Model Instance Verification Environments (1)

never (!) have a navigation that never finishes (!F), as long as we can only navigate one page at a

time (U). This example does not include the considerable amount of definitions necessary to model the

system; these definitions are included in Appendix F.

This specification focuses on the abstract concept of “page navigation” to identify an infinitely

redirecting page. This means that any form of page navigation in an IAML model instance must

be implemented according to these concepts, but also provides the model developer with a much

stronger system. Other concepts such as the behaviour of predicates and operations can be defined

entirely within this state-based system, allowing for the specification of more advanced constraints.

Such constraints could include that all operations executed within a system must terminate, or that no

variable may overflow its specified range (such as integer overflow).

The NuSMV project is released under the open source LGPL license; however development does

not occur in public, so it is not possible to obtain accurate measurements for many of the OpenBRR

quality measurements. In particular, there is no public bug tracker, so it is not known if there are

any critical or security issues in any given release. The OpenBRR evaluation therefore assumes the

worst-case values for these metrics.

6.6.9 Summary

A summary of this investigation is provided in Tables 6.5 and 6.6. Along with the common compar-

ison criteria discussed earlier in Section 6.1.1 and Section 6.1.2, each technology was evaluated on a

number of additional factors. This evaluation identified that none of these technologies satisfy all of
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Requirement Alloy EMFV OCL Dresden OCL NuSMV

Language Java Java Java C

Runtime environment Standalone Eclipse Standalone Standalone

Open source X(MIT) X(EPL) X(LGPL) X(LGPL)

Version 4.1.10 1.3.1 3.1.0 2.4.3

Uses POJO model 7 7 X 7

Supports subtypes 7 X X 7

Derivation cause X 7 7 X

Implementation X X X X

Transient properties 7 7 7 7

Lver expressiveness Relations Functions Functions n/a

Higher-order logic X X X 7

Supports inference X 7 Partial 7

Recursive rules 7 X X 7

Model checking X 7 7 X

OpenBRR rating 91 90 72 63

Average Quality 3.7 3.3 3.0 1.7

Average Support 1.0 3.0 1.0 1.0

Average Documentation 2.5 5.0 2.5 2.5

Average Adoption 3.5 2.0 2.0 3.0

Average Architecture 4.0 3.0 3.0 2.5

Table 6.6: Comparison of Model Instance Verification Environments (2)

the desirable properties of a universal verification engine, and each technology has at least one feature

that it does not currently support.

1. Uses POJO model: Does the underlying model used by the language implementation support

POJOs? That is, can the verification engine be inserted into an existing Java application without

any additional translation steps necessary? The benefits of this approach are identical to those

as discussed in the previous section.

2. Supports subtypes: Does the language support the concept of typed elements natively? If the

language does not, then the type system of the metamodel will need to be supported through

additional predicates, which may introduce development problems or impact performance. If

the language cannot support inference, then the range of possible constraints that may be imple-

mented will be heavily restricted.

3. Derivation cause: Can the verification engine provide any type of trace for a failed constraint?

Tracability will allow for a more informative error message to be displayed to the model devel-

oper, improving usability.

4. Implementation: Is an implementation of the language provided? This requirement is critical

for the technology to be considered as part of the proof-of-concept implementation in Chapter 7.

5. Transient properties: Is it possible to define the properties necessary for verification as tran-

sient? That is, can constraints define additional properties and predicates without having to
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modify the source metamodel? A language that does not support transient properties will need

to use a separate verification metamodel at runtime, increasing development effort.

6. Lver expressiveness: With respect to the categories defined earlier in Section 3.4.2, is the expres-

siveness of this verification language based on functions or relations? This may impact on the

performance and decidability of constraints expressed within this language.

7. Higher-order logic: Does this language support the definition of additional functions or relations

using higher-order logic? This may include support for transitive closure over relations, or

aggregation over functions.

8. Supports inference: Can the language define additional properties or predicates through in-

ference, or can a predicate only be defined within a single definition? Inference may allow

the decomposition of a complex constraint into many smaller definitions, supporting constraint

reuse.

9. Recursive rules: Can the language define recursive properties or predicates – that is, definitions

that can recursively call themselves? A language that cannot support recursion may restrict the

range of its expressible constraints. In some scenarios, recursion may be implemented using

transitive closure instead [62].

10. Model checking: Can the language evaluate a constraint by systematically checking all of the

possible states of the system, as described earlier in Section 3.4.2? Model checking allows for

a much more detailed analysis of the behaviour of the system, but requires significantly more

computing power in order to evaluate a constraint.

As discussed earlier in Section 3.4.3, model instance verification will be implemented within three

categories of constraint expressiveness, and each category implemented using a single constraint lan-

guage discussed in this section. To inform this decision, the desirable properties for each of these

categories must first be discussed. A summary of this evaluation against each of these criteria is

provided here in Table 6.7.

1. Function Language: The most important criteria for a function-based verification language are

ease of use and speed, since these will be evaluated frequently. Therefore, this technology needs

to provide an implementation, and should also support POJOs; support native subtypes; and

support the inference of transient properties. Since OAW Checks satisfies all of these criteria

and is executed within the Eclipse runtime environment, this technology is the ideal candidate

for the verification of model instance properties.

2. Relation Language with Higher-order Logic: Relation-based languages may incur a higher per-

formance penalty, but should support recursive rules and transitive closure. It is also important

that a derivation cause can be provided to the user, as a recurse constraint violation may be

more difficult for a model developer to understand. According to these evaluations, no technol-

ogy provides all of these features; the CrocoPat engine is however selected as it is preferable to

have recursive rules over model checking support.

3. Model Checking Language: Finally, an ideal technology for model checking must not only sup-

port model checking, but provide a derivation trace for constraint violations. The key difference



184 6 Implementation Technologies

Technology Function Language Relation Language + HOL Model Checking

EMFV OCL # 7 7

Dresden OCL X 7 7

Drools X # 7

OAW XX # 7

Jena X X 7

CrocoPat X XX 7

Alloy # X X

NuSMV # 7 XX

Marker Description

XX Best approach

X Satisfies most requirements

# Requires workarounds

7 Not supported

Table 6.7: A summary of the suitability of verification languages for addressing each verifica-

tion approach category

between Alloy and NuSMV is that Alloy tries to find invalid structures, whereas NuSMV tries

to find invalid behaviour through states. This difference allows NuSMV to be much more ex-

pressive for describing complex constraints and more thorough when finding violations, and is

therefore selected for the proof-of-concept implementation.

TODO I also did a performance evaluation, but this might be out of the scope of the thesis/evaluation.

Should I include it? It may give more weight to which engine is better.

6.7 Conclusion

In this chapter, a range of different technologies have been discussed, each which may be used in the

development of a model-driven environment for IAML model instances. For each type of technology,

one has been selected as the basis of the first proof-of-concept implementation of IAML. In the next

chapter, the details involved with actually implementing the modelling environment will be discussed.
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Proof-of-Concept Implementation

In the previous chapter, a range of model-driven technologies were reviewed and selected to form the

basis of the proof-of-concept implementation of IAML. This chapter will fully discuss the effort and

details required in actually translating the design of the modelling language into a functional graphical

editor. The development history of this implementation is available online at the IAML project page

of http://code.google.com/p/iaml/, and the public Subversion [50] source code repository at

http://iaml.googlecode.com/svn/trunk/.

7.1 Introduction

The implementation of this proof-of-concept graphical editor involves the development and integration

of a large number of components, such as model completion; code generation; instance verification;

and the underlying model instances and IAML metamodel itself. An overall summary of these com-

ponents and their integration is provided here as a UML component diagram in Figure 7.1, with each

technology viewed as a black-box component connected through external interfaces; the rest of this

chapter will decompose each of these components into a white-box view [227, pg. 152].

The overall runtime environment of the proof-of-concept implementation of IAML is within the

Eclipse framework [104], which provides a rich plugin environment based on OSGi bundles [?]. Each

of these implementation components may therefore be provided as an OSGi bundle, where each con-

necting interface is specified through exporting and importing packages.

For each component in the proof-of-concept implementation of IAML, the corresponding OSGi

bundle ID for its implementation will be provided using this visual syntax.

7.1.1 Implementation License

As discussed earlier in Section 5.1.5, one of the design goals of the IAML language was to provide

the language and proof-of-concept implementation under an open source license. It is undesirable

to define a new open source license, as a wide range of licenses have already been defined, and the

proliferation of different licenses is a major problem [97].

As mentioned earlier in Section 2.7.4, a full discussion on the integration of different open source

licenses is well outside the scope of this thesis, and the interested reader is referred to Michaelson

http://code.google.com/p/iaml/
http://iaml.googlecode.com/svn/trunk/
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Figure 7.1: Overall UML component diagram of the Proof-of-concept Implementation of

IAML

[206]. Other than simply making the source code available, other intentions of licensing this im-

plementation under an open source license were to ensure the project could be integrated into other

platforms; that the license is an open source license according to the Open Source Definition [233];

that the license supports the development of free software [206]; and that third-party modifications

should also be released under the same license to encourage community development.

In this implementation, the decision was made to use the Eclipse Public License (EPL) [71], as

it satisfies all of these license requirements. It is also trivial for EPL-licensed components to legally

work together, as many of the dependencies of the IAML implementation are already licensed under

the EPL. Finally, all EPL-licensed code can be reintegrated into the Eclipse project [72], meaning that

any extensions or fixes developed as part of this implementation can directly be contributed back into

the relevant EPL-licensed component.

7.2 IAML Metamodel

The IAML Metamodel component is implemented as a single component, and is implemented in EMF

2.5 [279]. This component internally depends on two external components to provide the metamodels

for XSD and Ecore. In particular, both the XSD and Ecore metamodels are provided through existing

implementations by the Eclipse Foundation [279, 74].
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Figure 7.2: UML component diagram of the IAML Model Component Decomposition

The corresponding OSGi bundle for the implementation of the IAML Metamodel (EMF) compo-

nent is org.openiaml.model. This bundle internally depends on the org.eclipse.xsd and

org.eclipse.emf.ecore bundles, implemented and supplied by the Eclipse Foundation.

7.3 IAML Model

The decomposition of the IAML Model component is provided in Figure 7.2. This component is

made up of two sub-components: a Model Instance component; and a Model Migration component.

The former component provides the functionality to store, interact and serialise a given IAML model

instance, with respect to the IAML metamodel; and the latter component provides the functionality to

migrate model instances between different metamodel versions.

7.3.1 Model Instance

The Model Instance component is the most critical component of the entire implementation, as all

of the other components in the system interact with IAML model instances. The implementation of

this component, however, is simply the generated source code from EMF from the given Ecore-based

metamodel. As described by Steinberg et al. [279], this involves automatically creating a genmodel

model for a given metamodel source – which, in this case, is an Ecore file – and then using this

genmodel model instance to generate the relevant source codes. IAML model instances are therefore

stored as XMI representations within iaml files, as illustrated throughout this thesis.

Only one extension needs to be used in the generation of the model instance source code. To

simplify the reference of model element instances in IAML model instances, all elements are given an

ID; that is, an EAttribute with the ID property set to true [279, pg. 110]. However, these IDs are not

generated automatically; the relevant Factory for the creation of the element must create its own ID.

To implement this, a dynamic template is provided to the JET engine1.

1The relevant dynamic template is org.openiaml.model/templates-emf/model/FactoryClass.javajet.

http://code.google.com/p/iaml/source/browse/trunk/org.openiaml.model/templates-emf/model/FactoryClass.javajet
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The corresponding OSGi bundle for the implementation of the Model Instance component is

org.openiaml.model. This bundle ID is the same as the IAML Metamodel (EMF) component,

which is a common scenario of generated EMF models [279, pg. 71].

7.3.2 Model Migration

As IAML was developed using an iterative evolutionary process as discussed in Section 5.1.3, existing

model instances used for testing the implementation had to be kept valid throughout the development

lifecycle with respect to changes to the underlying IAML metamodel. In this thesis, this process is

defined as model migration, which is “the execution of [an algorithm] on existing domain models to

transform them into domain models that are correct in the evolved domain” [?, pg. 6]; this is equivalent

to a model transformation where the source and target metamodels are different versions of the same

metamodelled domain.

The evolution of metamodels, and the subsequent migration of model instances to updated meta-

models, is a significant area of academic research2 [255] and an important aspect of developing a

domain-specific language [90, pg. 65]. As IAML was designed and implemented in an incremental

fashion, the model migration strategy used in the proof-of-concept implementation is an incremental

migration strategy, as discussed by Fowler [90, pg. 65]. That is, a suite of migrators are developed

over the course of the metamodel’s evolution, allowing for changes to build upon existing migrators.

The actual implementation of these migrators followed a naïve approach without references to a

model-driven environment. In particular, the migrators are written in Java, and operate on the XMI

representations of a model instance within iaml files. This approach was used as it was the simplest

to implement; there was no need to create a repository of old IAML metamodels, which would have

been of significant size3; and model migration is not a major focus of this research. Future model

migrators should instead follow one of the other migration approaches in order to obtain their benefits.

The corresponding OSGi bundle for the implementation of the Model Migration component is

org.openiaml.model.actions.

7.4 Graphical Editor

The decomposition of the Graphical Editor component is provided in Figure 7.3. This component

is decomposed into five separate sub-components: Model Edit, a component which provides a basic

interface to edit model instances; Diagram Editors, the set of diagram editors that actually provide

the graphical interface; Diagram Definitions, the model instances that define the diagram editors, and

are used to generate the editors themselves; Diagram Extensions, which provides graphical extensions

to the diagram editors, without having to modify the editors directly; and Diagram Actions, which

provide additional actions to the diagram editors themselves.

2TODO: Grundy said in his recent Massey presentation that model and tool evolution is tricky.
3At the time of writing, the IAML metamodel definition file iaml.ecore had been modified 239 times within the version

control repository.
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Figure 7.3: UML component diagram of the Graphical Editor Component Decomposition

7.4.1 Model Edit

Part of the implementation of EMF is EMF.Edit Support, which provides a basic user interface to

editing model instances, by combining the generated model plugin with the Eclipse UI Framework

JFace [279, pg. 45–46]. Similarly to the generated model plugin as discussed in Section 7.3.1, an Edit

plugin may be generated automatically from the genmodel model instance.

This generated plugin includes a tree-based viewer of a model instance derived automatically from

the metamodel structure, and a properties-based element viewer allowing a model instance developer

to modify the attributes and references of selected model elements. The generated implementation of

this component is fairly crude, but is a necessary requirement for the diagram editors, as discussed in

the next section.

The corresponding OSGi bundle for the implementation of the Model Edit component is

org.openiaml.model.edit. This bundle ID follows the standard naming pattern for gener-

ated EMF.Edit plugins [279, pg. 649].

7.4.2 Diagram Editors

The Diagram Editors component represents the actual graphical editors for IAML model instances.

As discussed earlier in Section 6.3, these editors are defined according to the Graphical Modeling

Framework (GMF). In particular, the graphical editor was implemented using GMF 2.2.

The source code for the diagram editors are generated according to the process described earlier

in Section 6.3.2; in particular, the editors are defined according to GMF metamodels, and are provided

by the Diagram Definitions component. A screenshot of the resulting diagram editor is provided here
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Figure 7.4: Implementation of a graphical editor for IAML model instances using the Graphi-

cal Modeling Framework

in Figure 7.4.

The visual representation of a model instance is stored independently from the underlying model

instance within a iaml_diagram file. GMF editors also provide the action “initialise diagram file”

to initialise a new visual representation of a model instance, which uses the automatic layout logic

provided by GMF. Within the IAML implementation of the Diagram Editors component, this allows

any iaml model instance to be transformed into a visual representation.

Hierarchical Modelling

As discussed earlier in Section 5.2.2, model instances are intended to be edited following a hierarchical

modelling approach, in order to reduce the complexity of model instance development and to support

a number of different visual metaphors. The implementation of hierarchical modelling using GMF

was straightforward, but equired some diagram extensions to improve usability.

The basic implementation of hierarchical modelling was provided by GMF’s built-in support for

diagram partitioning; this approach allows for different model elements to appear as the current “root”,

and model instance developers can navigate through the model instance by opening and closing ele-

ments and tabs, as illustrated in Figure 7.4. For example, by double clicking on the representation of

a particular Frame instance, a new Frame diagram editor window will open, visually representing the

directly contained contents of that Frame element instance; a number of diagram extensions such as



7.4 Graphical Editor 191

Top-Level Container OSGi Bundle ID

Internet Application org.openiaml.model.diagram

Access Control Handler org.openiaml.model.diagram.access_handler

Activity Predicate org.openiaml.model.diagram.condition

Email org.openiaml.model.diagram.email

Frame org.openiaml.model.diagram.frame

Domain Instance org.openiaml.model.diagram.instance

Domain Iterator org.openiaml.model.diagram.iterator

Login Handler org.openiaml.model.diagram.login_handler

Activity Operation org.openiaml.model.diagram.operation

Domain Type org.openiaml.model.diagram.schema

Session org.openiaml.model.diagram.session

Visible Thing org.openiaml.model.diagram.visual

Table 7.1: Generated Diagram Editors in IAML and their associated OSGi Bundle IDs

breadcrumbing and shortcuts extend this functionality, as discussed later in Section 7.4.4.

Only model elements that are intended to contain other elements should have an associated dia-

gram editor; this significantly reduces the number of different diagram editors that are necessary. A

list of all of the diagram editor instances, along with their associated OSGi bundle IDs and the type of

their root model element – known in GMF as the top-level container4 – are listed in Table 7.1.

7.4.3 Diagram Definitions

As discussed earlier, the Diagram Definitions component defines the abstract representations of the

intended diagram editors according to the GMF metamodels, and these diagram definitions may then

be translated into instances of diagram editors as through the process discussed earlier in Section 6.3.2.

In particular, four metamodels (gmftool, gmfgraph, gmfmap and gmfgen) are defined by GMF, and the

GMF framework provides code generation templates implemented in Xpand to translate instances of

gmfgen models into Java source code.

Only one instance of the gmfgraph metamodel is necessary, as there should only be one visual

representation of each IAML metamodel element. These graphical definitions are shared across all

of the editors as described in Table 7.1. For each of these editors, an associated gmftool, gmfmap

must manually be defined, as each diagram editor has a different set of elements that can be displayed

(gmfmap), and a different set of elements that can be created (gmftool). By combining these three

model instances together using the GMF framework, an instance of the gmfgen metamodel can be

created for each of the diagram editors, and this instance can then be used to generate the source code

of the actual diagram editor.

As an example, the Session diagram editor is generated by combining the graphical definitions in

the iaml.gmfgraph file; the palette tooling definition in the session.gmftool file; and the shape

4A diagram editor defined GMF with an abstract root element type as a top-level container will generate a warning

message of “Top-level diagram container must be concrete” when the editor is generated. This warning is raised as it is not

possible for a model developer to create an instance of an abstract element, and occurs when generating the Visible Thing

diagram editor, but this warning may be ignored in hierarchical approaches for elements contained directly or indirectly by

the concrete root element.
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and element mapping definitions in the session.gmfmap file, into the editor generation definitions

into the session.gmfgen file.

The corresponding OSGi bundle for the implementation of the Diagram Definitions component

is org.openiaml.model, as the diagram definitions are stored in the same location as the IAML

Metamodel component to simplify development.

SimpleGMF

It was recognised during the development of the Diagram Definitions component that many of the

GMF model instances shared similar features. For example, the “open diagram behaviours” needed to

be consistent across all gmfgen instances; mappings in gmfmap instances needed to be consistent with

the IAML metamodel structure; and tool definitions in the gmftool instances needed to be consistent

with these gmfmap mappings.

In response to these common patterns, a domain-specific modelling language named SimpleGMF

was developed, which also uses model transformations in openArchitectureWare to simplify the de-

velopment of these many GMF model instances. This language allows for many common GMF defi-

nitions to be defined in a single graphical definition file, and generates all of the model instances of the

four metamodels (gmftool, gmfgraph, gmfmap and gmfgen) necessary. The full description of Sim-

pleGMF is well outside the scope of this thesis; the interested reader is instead referred to the project

homepage at http://openiaml.org/simplegmf/.5

Visual Notation Cognitive Effectiveness

As discussed earlier in Section 4.10.1, the design of the visual syntax for IAML model instances needs

consider the usability of the resulting syntax, and to satisfy the goal of having a one-to-one mapping

between elements and notations. With respect to the cognitive effectiveness guidelines proposed by

Moody [211], the visual syntax has the following design:

1. Construct deficit, where a model concept does not have a corresponding visual notation, is

permitted for attributes and references that are rarely used. This is acceptable as all attributes

and references are still accessible to the developer through an additional dialog – the Selected

Element Properties frame, as in Figure 7.4.

2. Construct redundancy, where multiple visual notations can represent a single model concept,

is not accepted with two exceptions: displaying the metaclass name of elements, and displaying

the name of element parents, as discussed in the next section.

3. Construct overload, where a visual notation can represent multiple model concepts, is not

permitted.

4. Construct excess, where a visual notation does not represent any model concepts, is also not

permitted.

5TODO: This could also be published as a paper.

http://openiaml.org/simplegmf/
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Shape Design

It is necessary to describe the design of the visual notations of IAML model elements, along with

the rationale behind each of their designs. This process involves seven parameters: shape type; shape

style; icons; colours; line weights; line patterns; and font styles. The design decisions for each of these

parameters are partially inspired by the guidelines discussed earlier in Section 4.10 by Moody [211]

and Rumbaugh [259].

1. Shape type refers to whether a model element is displayed as a node or an edge. All model

elements will be represented as nodes, with the references between them as edges; however,

certain IAML model elements (such as Wires) represent relationships themselves, and should

therefore be displayed as edges to simplify the visual syntax.

GMF editors are designed to work best when there is a one-to-one mapping between graphical

elements and element instances in the underlying metamodel. GMF may represent references

between element instances using nodes or edges, however this requires the definition of addi-

tional gmfmap constraints. Additional types of derived nodes and edges may also be displayed,

however requires the definition of both additional gmfmap constraints and OCL constraints,

which had only recently been supported in GMF 2.36. Due to the resource constraints of this

research, it was therefore decided to only support the representation of element instances as

nodes or edges, and not the representation of references or attributes.

All model elements within IAML are displayed as a node, with the exception of elements that

represent relationships or flows. That is, edges are used as the syntax for all ECA Rules, Condi-

tions, Parameters, Wires and Constraint Edges. Edges are also used for the operation modelling

elements of Data Flow Edges, Execution Edges and External Value Edges; and for the domain

modelling elements of Provides Edges, Requires Edges, Schema Edges and Select Edges. Ref-

erences and attributes for a particular model element instance are not represented as nodes or

edges, but as labels attached to the shape type of the element itself.

2. Shape style only applies to node shape types, and refers to the actual style of the node shape;

for example, whether the node is displayed as a rectangle, an ellipse, or another shape. The

list of visual shapes currently used for various model elements is illustrated here in Table 7.2.

Where appropriate, visual designs are inspired by the similar visual stereotypes defined in the

UML 2.0 specifications [227].

3. Icons are used as an abstract representation of the node or relationship itself. An icon may be

visible in three locations, as illustrated in Figure 7.4: the tree-view model instance editor created

by EMF [279]; the element creation palette; and on the element itself in the graphical editor.

Every model element in IAML is provided with a unique icon, partially satisfying the require-

ment that each model element must have a unique notation. Moody [211] surprisingly finds

that icons are rare in software engineering visual notations, and that most rely on geometrical

shapes; however, icons can easily be too subtle, and do not satisfy the guideline proposed by

Rumbaugh that instances must be easy to draw by hand [259].

6Eclipse bug 256461: Use ParsingOptions.IMPLICIT_ROOT_CLASS for implicit access to the features of EObject in all

OCL queries in GMF

https://bugs.eclipse.org/bugs/show_bug.cgi?id=256461
https://bugs.eclipse.org/bugs/show_bug.cgi?id=256461
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Shape Model elements represented

The default shape for IAML model elements. This includes visual ele-

ments such as Visible Things, domain modelling elements such as Do-

main Types and Domain Sources, and value instances such as Values.

This shape is used for Operations.

This shape is used for Functions and Permissions.

This shape is used for Events, and is based on the visual notation for

UML SendSignalAction elements [227, pg. 284].

Table 7.2: Shape styles for the visual representation of IAML model elements

4. Colours refer to the colours used in the nodes and edges. For colourblind users or for printing

in black and white, the choice of colours can impact on the accessibility of the environment;

however, the colour of a visually represented model element does not impact on the behaviour

or functionality of that element in any fashion, as elements are distinguished through their meta-

class names. There are three categories of colours used:

(a) Edges: One of the guidelines proposed by Rumbaugh [259] is that diagrams “must fax

and copy well using monochrome images”. Subsequently, all lines and edges used in the

IAML visual syntax are coloured black.

(b) Nodes: These colours refer to the overall colours of the node backgrounds. As our im-

plementation is within the Eclipse environment, it is appropriate to reuse the style and

design guidelines provided for Eclipse plugins [175]. Seven colours – the maximum num-

ber of colours that a user can distinguish [211] – are selected from the Eclipse palette7,

and applied to the background colour of model elements as illustrated here in Table 7.3.

(c) Text: Following the same logic behind the decision of edge colours, all text in the IAML

visual syntax is either coloured black, gray, or dark blue. Gray is only used for labels that

are read-only, such as includes container names (Section 7.4.4). Dark blue is only used

to distinguish the containment feature of particular elements, such as Events, as discussed

later in the next section.

5. Line weights for all nodes and edged within IAML are rendered at the default line weight. As

per the guideline proposed by Rumbaugh [259] – “distinctions are not too subtle” – no other

line weights are used, as it can be difficult to distinguish between line weights when a diagram

is printed or viewed in a different screen resolution.

6. Line patterns refer to the pattern used on an edge or border; in the visual syntax of IAML, most

7According to the style and design guidelines of Eclipse [175], the predominant colours used in the palette are Blue,

Yellow, Green, Red, Brown, Purple, and Beige.
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Colour Model elements represented Sample

White Default shape background color.

Red Indicates components, such as Login Handlers and Access Control Handlers.

Orange Indicates Functions and Conditions.

Brown Used for domain modelling and user modelling, such as Domain Types, Domain Iter-

ators and Permissions.

Yellow Indicates scopes, such as Sessions.

Green Indicates events, actions, gates, or other sources of actions, such as Events and Gates.

Blue Indicates operations and their contents, such as Operations and Activity Nodes.

Gray Indicates instances of data, such as Values and Temporary Variables.

Table 7.3: Background colours for the visual representation of IAML model elements

edges and borders are rendered as a solid line. A single form of dashed line is used for elements

involving some level of interactivity or behaviour, to ensure distinctions between line patterns

are not subtle. In particular, a dashed line is used to represent all ECA Rule, Wire, Data Flow

Edge and Constraint Edge instances.

7. Font styles refer to the font faces, sizes, weights, and decorations used for text on model ele-

ments.

(a) Font face: It is not desirable for an interface to use too many different font faces. Pnly

one font face is therefore used across all IAML model elements.

(b) Font face: Similarly, it is not desirable for an interface to use too many different font sizes,

and only one font size is used across all IAML model elements.

(c) Font weight: Font weight refers to the measure in which a font is emboldened. In IAML,

the two font weights of normal and bold are used, and most IAML model elements are

represented using the normal weight. The only two exceptions are the name of the con-

tainment feature and to highlight overridden elements, as discussed in the next section.

(d) Font decorations: Font decorations refer to whether a font is in italic, or underline, or

both. All labels in the IAML visual syntax are represented as undecorated labels, with one

exception; the metaclass name of a model element is displayed with an underline as per

the UML notation [226, pg. 201], as discussed in the next section.

For each model element in the IAML language, a value for each of these parameters is selected

according to the design decisions behind the parameter, and encoded as a diagram definition in a

gmfgraph model instance. A comprehensive reference to the visual syntax used to represent each

modelling element is provided in Appendix ??.

7.4.4 Diagram Extensions

While the GMF framework is powerful, it is still necessary to extend the generated IAML graphical ed-

itors to provide additional domain-specific functionality. For example, breadcrumbing and metaclass

name extensions would be very difficult or impossible to achieve strictly within the GMF runtime, and

these extensions should be provided to the editors in an automated way.
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There are three ways in which diagram editors generated through GMF may be extended. One

method is by providing extensions through Eclipse extension points, defined by GMF8. Another is by

modifying the generated source code manually; the GMF framework adheres to the semantics of the

@generated tag as from EMF, as discussed in Section 6.2.1.

Finally, dynamic templates may be provided to the generation framework. These templates use the

functionality of dynamic templates provided by Xpand, as discussed in Section 6.4.3. In particular,

a template file with the same name and the same location as an existing Xpand template will be

used to extend or replace the original template. This is achieved with the AROUND operator and the

targetDef.proceed() command.

Manual modifications to the diagram editors are not used in IAML. This means that no diagram

editor code needs to be modified manually, and thus the source code does not need to be committed

to the version control repository. Extension points would be an ideal way of modifying diagram

editors; extension points allow extensions to be added and removed silently, improving performance

and scalability, and reducing errors by defining well-designed interfaces [104]. However, the extension

points available at the time could not be used to implement some of the necessary diagram extensions.

The generated diagram editors in IAML were therefore extended through both extension points

and dynamic templates. The Diagram Actions component represents instances of extensions through

extension points, and is discussed later in Section 7.4.5; this section will instead discuss the use of

dynamic templates for diagram extensions. Five diagram editor extensions will be discussed in this

section: breadcrumbing; shortcuts; container names; metaclass names; and generated element nota-

tions. These dynamic templates are supported by a library of common code to improve performance

and reduce dependencies, which is stored in a separate OSGi bundle.

The dynamic templates for the Diagram Extensions component are stored within the

org.openiaml.model OSGi bundle, along with the dynamic templates used for the Model In-

stance component. The library of common code used by the Diagram Extensions component is

provided by the org.openiaml.model.diagram.helpersOSGi bundle.

Breadcrumbing

As discussed earlier in Section 4.1.2, it is important for a hierarchical modelling approach to provide

appropriate context. For example, a developer may “zoom into” one of two unrelated Frames may

both contain a Input Text Field labelled “name”; context is necessary to inform the developer of

which Frame instance they are currently viewing.

Breadcrumbs are a technique used in web applications to provide context information to the user

about their current location within a web site, which may improve user satisfaction and the efficiency

of site navigation [?]. This technique is adapted to the diagram editors of IAML; these breadcrumbs

highlight the navigation path from the root model element (the Internet Application) to the currently

viewed model element via the implicit container references of each model element, as discussed

earlier in Section 5.3.2. This breadcrumb is calculated automatically and does not persist as part

of the diagram; an example of breadcrumbs is illustrated earlier in Figure 7.4.

8One such extension point is the org.eclipse.gmf.runtime.diagram.ui.layoutProviders extension point,

which is used to define layout providers for diagram editors.
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Shortcuts

While breadcrumbing provides context for a particular view of the contents of a model element, it does

not provide information about references to model elements outside of the current model element

contents. For example, when a Button is intended to navigate to another Frame when the onClick

event is triggered, this external Frame reference should be visible.

GMF supports this concept through shortcuts, where external element references are displayed as

normal elements, but with an additional shortcut annotation ( ). These model elements must have

a corresponding shape/element mapping in the gmfmap definition of the current editor, but does not

necessarily have to have a corresponding palette tooling entry in the gmftool definition. Additionally,

these shortcuts are only displayed for node types, and not for edge types such as Wires.

It was necessary to extend the default GMF implementation of shortcuts. With the default im-

plementation, only elements that can be directly contained in the view element could be added as

shortcuts; edges between elements would disappear if they are not directly contained; and edges be-

tween shortcut elements did not persist across views. Some of these issues are acknowledged GMF

bugs, whereas others are expected functionality.

To resolve these issues, a custom shortcut controller GetShortcuts was implemented, which pro-

vides a list of relevant nodes and edges that should be rendered as shortcuts contained within a particu-

lar model element instance. This controller is then integrated into the generated GMF editors through

the use of dynamic templates.

Container Names

While shortcuts can be used to display a model element outside of the currently viewed container,

the shortcut icon is a binary annotation that does not provide context to where the model element is

actually contained. To resolve this issue, a reference to the container of the particular model element

is displayed for every model element. Currently this reference is a label documenting the containers’

name, as illustrated in Figure 7.4.

Not all model elements need a reference to their parent displayed; for example, Domain Types

and Predicates are global throughout the entire application, and such a parent reference would clutter

up the visual representation. Parent labels are therefore only displayed for certain element types9.

Metaclass Names

As discussed earlier in Section 5.3.4, UML generally uses differences in visual notation to distinguish

between the instances of different metaclasses. That is, an Input Form should have a different visual

notation to an Input Text Field. However, developing unique visual notations for every model element

represents a significant amount of effort. A simple interim solution was to follow the UML syntax for

defining instances of classes – as illustrated in the UML infrastructure specification [226, pg. 201] –

where a model element may also display the name of the defining metaclass of that element.

An example of how metaclass names are displayed on every model element is illustrated in Fig-

ure 7.4. These element instance names are derived automatically from the model element instance

class at the time that the model element is displayed, and these labels do not persist in the visual nota-

9At the time of writing, these elements were Domain Attribute; Domain Attribute Instance; Event; Operation;

Function; Value; Frame; Gate; and Visible Thing.
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Normal

: Session

/Generated

/: Session

Overridden

: Session

Figure 7.5: Illustrating generated and overridden elements in the IAML editor

tion. The textual format of metaclass names also means that every different model element type may

be distinguished, even if the representation is printed without any colours.

Containment Feature

In terms of EMF, a containment feature is a reference that may contain other elements. The IAML

metamodel was designed to reduce containment feature redundancy, where it should not be possible

for a model element to be contained within two or more derived containment features for a particular

model element10.

However, the IAML metamodel does support containment feature redundancy for certain ele-

ments; for example, a Changeable element defines the onAccess and onChange events through con-

tainment features earlier in Figure 5.14, and each of these references must hold an Event instance.

The functionality of each Event depends on the containment feature that contains it; however within

GMF, a shape is defined by the element type itself, and does not consider the containing feature11.

To distinguish between the different containment features which may contain an element, one

option is to define a range of element shapes, one for each containment feature; for example, the

onAccess event could have a slightly modified shape, or the onChange event could have a different

background colour. However, it is preferable to keep the shape styles consistent, as it is only the

containment feature that dictates the differences in functionality.

A containment feature label is therefore defined for elements that may be contained through many

containment features12. These labels are rendered in a dark blue and bold font, and displays the name

of the containment feature. An example of this containment feature label is illustrated in Figure 7.4;

this label is also provided automatically and does not persist as part of the visual notation.

Generated Element Notations

As discussed earlier Section 7.5, the usability of the implementation of model completion depends on

the support of the development environment. For example, a notation is necessary for distinguishing

the difference between developer-created elements, and elements created through model completion.

Based on the UML concept of derived properties with a name prefix of a forward slash “/”, all gener-

ated elements are prefixed with this slash, as illustrated in Figure 7.5.

Similarly, a notation is necessary to distinguish elements that have been manually overridden by

the developer, as discussed later in Section 7.5.2. One approach to solving this problem is derived

from the use of stereotypes or classifiers in UML visual syntax, where textual stereotype labels such

as «generated» or «overridden» may be rendered on generated or overridden model element instances.

10For example, if a model element could contain any number of Functions, and a subtype of this model element could

additionally contain any number of Predicates, then an instance of a Boolean Property could be contained within either of

these containment features by an instance of this subtype.
11A more detailed discussion on GMF view mapping mismatches between the underlying metamodel and the resulting

representation is discussed later in Section 9.2.3.
12At the time of writing, these elements were Gate; Event; Value and Builtin Property.
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Another approach to solving this problem is illustrated within Mozilla Firefox; overridden con-

figuration values are highlighted in bold, allowing users to quickly identify overridden values. This

approach is used in IAML diagram definitions, where all overridden elements are rendered in bold,

as illustrated in Figure 7.5. This approach is preferred over using textual stereotypes labels as it is

simpler to implement, and reduces the visual complexity of the resulting diagrams.

7.4.5 Diagram Actions

Some of the extension points provided by GMF are used to define additional action-based extensions

to the diagram editors. Two actions operate on entire collections of visual model representations – i.e.

iaml_diagram files – as discussed below:

1. Export to PNG: GMF provides a builtin command to export a single diagram view to a range

of image formats, such as GIF, PNG and SVG. This action extends this functionality to also

export all of the views of this diagram; that is, every hierarchical level of the diagram, from the

root element to every child.

2. Export to HTML: This action extends the previous action to also generate a set of HTML files,

which provide imagemaps [294] on the exported PNGs to allow a user to navigate through the

model instance graphically. This action is used by the ModelDoc framework [321] to export

navigable example models.

Three actions were also defined to operate on individual model elements within a particular dia-

gram, and can also be applied to collections of individual model elements.

1. Infer only contained elements: This action applies model completion to only the selected

element, in order to create all of the elements that would be contained by this particular element

if model completion were to occur. That is:

(a) First the entire model is completed, as in the Infer all elements action discussed later in

Section 7.8.

(b) The contents of the model are iterated over, and all generated elements – that is, Gener-

ated Elements where is generated is true – that are not contained (directly or indirectly

through children) by the target element are removed.

(c) All generated elements that refer to deleted elements are then recursively removed. This

process is repeated until the model has stabilised.

It is important to note that this action is not guaranteed to be safe according to the properties of

model completion. In particular, subsequent model completions on this partially inferred model

instance may create a different model instance, i.e. C(X) 6=C(C(X)−Y ). However, in practice

this restriction has not yet proven problematic, and it helps the model developer in overriding

the contents of individual model elements.

2. Remove contained generated elements: This command similarly operates on a single element,

and attempts to remove all generated elements that are contained within the selected element.

If there are other non-generated elements that refer to the deleted generated element (and its

contained children), then the developer is warned that the resulting model may be inconsistent.
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Figure 7.6: UML component diagram of the Model Completion Component Decomposition

3. Move into separate model: This refactoring action moves the selected diagram elements into

a separate IAML model instance, allowing for complex model instances to be split into smaller

model instances. This action simply reuses existing EMF functionality [279, pg. 33].

The corresponding OSGi bundle for the implementation of the Diagram Actions component is

org.openiaml.model.diagram.custom.

7.5 Model Completion

As discussed throughout this thesis, model completion may be used to complete additional func-

tionality on a model instance. This includes the implementation of Wires (Section 5.8); complet-

ing the Domain Feature Instances within Domain Instances based on their defining Domain Types

(Section 5.5.4); or the implementation of client-side input validation based on primitive types (Sec-

tion 5.4.4).

The Model Completion component defines the implementation of the model completion process,

as proposed by Wright and Dietrich [324] and discussed earlier in Section 3.2. The underlying rule

engine behind the implementation of model completion in IAML is Drools [277], as selected through

the evaluation process of the previous chapter in Section 6.5.

The decomposition of this component is provided in Figure 7.613. This component is made up of

three sub-components: the Drools component, which provides the implementation of the Drools rule

engine; the Rule Set component, which encodes the logic and intent behind IAML model completion

into rules into a format for the rule engine; and the Completion component, which connects the rules,

engine, and model instance together, and provides the interface necessary to execute model completion

on model instances.

13This decomposition represents an ideal-world situation, where standards such as RuleML [310] should allow the trans-

parent exchange of different rule engines without loss in functionality; realistically, Drools rules include functionality spe-

cific to the engine itself.
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The corresponding OSGi bundle for the implementation of the Model Completion component is

org.openiaml.model.drools, and all sub-components provided within this same bundle.

7.5.1 Completion

The Completion component integrates the set of model completion rules (the Rule Set component)

into an instance of the rule engine (the Drools component), and also extends the rule engine with the

requirements necessary to implement model completion according to the requirements proposed by

Wright and Dietrich [324]. In particular, the implementation of the insertion cache [324] is provided

by this component14 .

7.5.2 Rule Set

The model completion rules necessary to implement the semantics of the modelling language in Ap-

pendix ?? are represented here as the Rule Set component, and are implemented within 261 instances

of Drools rules. To simplify development, these rules are separated into 21 separate rule packages,

each within a single file; a summary of these rule packages is provided in Appendix G.

As discussed earlier in Section 3.2.1, an important aspect of model completion is ensuring that

the rules are well-documented, so that the developer can anticipate the intent of the process. This

documentation requirement is addressed by the ModelDoc framework [321], where the @inference

tag can be used to describe the intent of a model completion rule. A sample implementation of one

of these rules is provided here in Listing 20; this inline documentation is used later to populate the

documentation of the Sync Wire element itself in Section ??.

One key idea behind model completion is that depending on the intent of the model developer,

generated elements may be removed, or model completion may be selectively disabled [324]. The

IAML proof-of-concept implementation supports this concept by selectively overriding the generation

of elements, using the overridden property of the Generated Element model element.

The behaviour of the overridden property is simple. As part of the creation of new modelling

elements through model completion, each modelling element is referenced as generated by a particular

element15. For example, each of the elements generated by a Sync Wire connecting two Input Forms

should reference the wire instance as its generator. Conversely, if an element is overridden, then no

elements should be generated by that overridden element.

As the overridden property of a Generated Element is stored as a normal attribute within the meta-

model, it can be modified as normal by interacting with the properties dialog of a selected element.

As described earlier in Section 7.4.4, all overridden elements are represented in the graphical editor in

a bold font, to illustrate that the element is overridden.

TODO Discuss overridden names property.

7.5.3 Drools

The final component necessary to implement model completion is the implementation of the Drools

rule engine, as described by Proctor et al. [248]. At the time of writing, version 4.0.7 of the Drools

14The implementation of the insertion cache is provided by DroolsInsertionQueue.java.
15This also means that for an element to be used in the generation of another element, this element must be a subtype of

the Generates Elements interface.

http://code.google.com/p/iaml/source/browse/trunk/org.openiaml.model.drools/src/org/openiaml/model/drools/DroolsInsertionQueue.java
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/**

* @inference SyncWire When a {@model Changeable} is connected to an

* {@model ContainsOperations} by a {@model SyncWire}, the source

* element will {@model ECARule call} the ’update’ {@model Operation} on

* the target when the source {@model Changeable#onChange changes}.

*/

rule "Run instance wire from edit to update (onChange)"

when

sw : SyncWire( overriddenNames not contains "run" )

source : Changeable( )

target : ContainsOperations( )

eval( functions.connects(sw, source, target) )

event : Event( source.onChange == event )

operation : Operation( eContainer == target, name=="update" )

not ( ECARule( trigger == event, target == operation, name == "run",

eContainer == sw ) )

eval( handler.veto(sw) )

then

ECARule rw = handler.generatedECARule(sw, sw, event, operation);

handler.setName(rw, "run");

queue.add(rw, drools);

end

Listing 20: One Drools rule used in the model completion implementation of the Sync Wire

model element

engine was used, which is provided as a collection of JARs.

7.6 Code Generation

The Code Generation component implements the model-to-text transformation step necessary to trans-

late an IAML model instance into an executable web application. The underlying code generation

engine behind this implementation is openArchitectureWare (OAW) [76], as selected through the

evaluation process of the previous chapter in Section 6.4. This component relies on a number of sub-

components, and the decomposition of the Code Generation component is provided in Figure 7.716.

This component is made up of six sub-components: the openArchitectureWare component, which

provides the OAW implementation; the Templates component, which provides the code generation

templates themselves; the Runtime Library component, which provides additional libraries necessary

for runtime applications; the Platform Configuration component, which provides platform-specific

information to the platform-independent IAML model instance; the Output Formatter component,

which reformats generated source code into a more readable form; and the Generator component,

which connects all of the components together into a single workflow.

16Similarly to the decomposition of the Model Completion component, this represents an ideal-world situation where

code generation templates may be executed using different code generation engines without any loss in functionality.
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Figure 7.7: UML component diagram of the Code Generation Component Decomposition

7.6.1 openArchitectureWare

This component simply provides the implementation of the OAW template engine, as described by

Efftinge et al. [76]. The code generation templates were implemented with the openArchitectureWare

4.3.1 framework. As discussed earlier in Section 6.4.4, it is desirable to migrate these templates to the

recently released Xpand framework, and this remains future work17. The OAW library is implemented

as a set of Eclipse plugins, and thus is available as a set of OSGi bundles.

The corresponding OSGi bundles for the implementation of the openArchitectureWare

template engine component are org.openarchitectureware.dependencies and

org.openarchitectureware.workflow, provided by openArchitectureWare.org.

7.6.2 Templates

The collection of code generation templates necessary to implement the behaviour of IAML model

elements are represented as the Templates component, and are implemented using 160 template files.

The openArchitectureWare Xpand implementation of one of these templates – runFrameEvents,

which implements the triggering behaviour of the onInit and onAccess Events within a Frame – is

illustrated here in Listing 21.

The target languages of the proof-of-concept code generation implementation is a combination of

PHP 5.3 [183]; Javascript 1.6 [87]; HTML 4.01 [294]; CSS level 2 [304]; and the relational database

sqlite [236]. At the time that these templates were implemented, the development of HTML 5 had not

yet reached the recommendation stage. PHP was selected as the underlying server-side language as it

17Issue 71: Migrate OAW Xpand to Eclipse Xpand.

http://code.google.com/p/iaml/issues/detail?id=71


204 7 Proof-of-Concept Implementation

/**

* @implementation Action

* {@model Action}s are run in order of descending priority; that is,

* a higher priority {@model Action} will execute first.

*/

«DEFINE runFrameEvents(String eventName) FOR model::Event-»

// Frame EventTrigger «this»

«IF eventName == "init" || eventName == "access"-»

// Actions sorted by priority

«EXPAND template::operations::OperationCall::callOperation(true, false)

FOREACH listeners.sortBy(e|-e.priority)-»

«ELSE-»

«throwException("I don’t know what to do with frame event " + name)»

«ENDIF-»

«ENDDEFINE»

Listing 21: Implementation of the runFrameEvents code generation template in Xpand

/**

* Get the containing {@model Scope} of the given element,

* or <code>null</code> if none.

*/

model::Scope containingScope(emf::EObject this) :

null;

model::Scope containingScope(model::NamedElement this) :

containingScope(eContainer);

model::Scope containingScope(model::Scope this) :

this;

model::Scope containingScope(model::InternetApplication this) :

null;

Listing 22: Implementation of the containingScopemodel extension in Xtend

was already well-known, and a PHP-based implementation would strongly assist in the proof that the

IAML metamodel is platform-independent.

These templates include some model instance extension definitions, using the Xtend language

[76]. For example, the extension containingScope implements the semantics of the containing

scope definition earlier described in Section 5.10; the source code for this metamodel extension is

illustrated here in Listing 22. The collection of templates also require the runtime library, as discussed

in the next section.

The corresponding OSGi bundle for the implementation of the Templates component are

org.openiaml.model.codegen.php.
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7.6.3 Runtime Library

The Runtime Library component provides common libraries necessary for the generated web appli-

cations, in order to obtain a number of maintainability-related benefits. In particular, these libraries

can be tested independently of the code generation templates; improvements in the libraries can be

published independently of the metamodel; code generation templates can be simpler, and generated

source code will consequently be simpler; and it is easier to include third-party library components as

part of an included library.

Much of the runtime library is the implementation of a single library in two different implementa-

tion languages. For example, the typing system of IAML has to be implemented both in the server-side

PHP language, and in the client-side Javascript language. For functionality that cannot be executed on

the client-side – for example, sending e-mails – callback interfaces must be implemented. Similarly,

builtin XPath functions such as fn:contains must be implemented in both PHP and Javascript as

part of the implementation of XQuery Functions.

The runtime library also includes two third-party components: PHPMailer [?], which provides a

rich interface to send e-mails and is used in the implementation of Email; and the Prototype Javascript

Framework (prototype.js) [249], which may be used to simplify the development of client-side Javascript

within RIAs. The development of this library also included the development of an additional compo-

nent html2text, which provides functionality to transform an arbitrary block of HTML-formatted text

into a text-only format, which looks similar to the corresponding HTML representation.

The corresponding OSGi bundle for the implementation of the Runtime Library component are

org.openiaml.model.runtime, and the third-party PHPMailer library is provided through the

OSGi bundle org.openiaml.model.runtime.phpmailer.

7.6.4 Platform Configuration

There are a number of platform-specific configuration elements that are necessary for the generation

of a web application, such as proxy information and API keys. As one of the design goals of the

IAML metamodel was to provide a platform-independent metamodel, it is not possible to place this

configuration information in these model instances. These platform-specific configuration values are

instead defined within a platform-specific metamodel, and these model instances are instead provided

to the code generation framework.

Currently, the platform-specific model is simply provided as a set of key/value pairs, as discussed

later in Appendix H. However, this model instance could be represented as an instance of an EMF

metamodel, which would afford the resulting platform-specific model instances all of the benefits of a

model-driven approach, as described earlier in Section 3.1.3. This approach remains future work18.

The implementation of the Platform Configuration component is included as part of the Generator

component within the org.openiaml.model.codegen.phpOSGi bundle.

18Issue 87: Develop platform-specific metamodel for project properties.

http://code.google.com/p/iaml/issues/detail?id=87
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7.6.5 Output Formatter

If a code generation framework is generating source code for a language that is freeform1920, the

resulting source code is often poorly structured in terms of readability, as the code generation templates

do not need to understand the syntax of the target language. While this unreadable source code is still

valid program code, it may be desirable to transform this source code into a readable format, to assist

in debugging and third-party extensibility.

A common approach to solve this problem is to provide a component to reformat the generated

source code; for example, the EMF framework uses Eclipse’s Java Development Toolkit (JDT) project

to reformat the generated metamodel source code [279, pg. 358]. In openArchitectureWare terms, this

formatter is known as a postprocessor, which operates on file instances as they are created through the

workflow [76].

Because the web applications generated by the IAML code generator are a mix of PHP, Javascript,

CSS and HTML, it is difficult to format the source code correctly using a single AST-based parser.

Source code of these languages may occur at any time at any arbitrary location; for example, a HTML

page may contain a Javascript script, which then contains a PHP instruction within a variable identifier.

At the time of writing, no existing parser supported simultaneous formatting for these four languages.

As part of this proof-of-concept implementation of IAML, the iacleaner project was developed

to apply code formatting to the diverse mix of web application languages used within IAML. This

project uses a custom parser which provides the ability to “jump out” between languages, but does

not construct an AST. The iacleaner project is released as an Eclipse plugin under the Eclipse Public

License, and is available online at http://code.google.com/p/iacleaner/.

The corresponding OSGi bundle for the implementation of the Output Formatter component is

org.openiaml.iacleaner.

7.6.6 Generator

The final component necessary to implement the code generation component of IAML is the Gen-

erator component, which orchestrates all of the sub-components together. This component includes

an instance of an openArchitectureWare workflow [76], which is executed by the template engine to

generate the web application source code. This component also includes the user interface actions

necessary to execute the code generation on a particular model instance.

The corresponding OSGi bundle for the implementation of the Generator component is

org.openiaml.model.codegen.php.

7.7 Model Verification

The Model Verification component defines the implementation of model instance verifiers. As dis-

cussed in Section 6.6, there are many different types of verification that may be performed on a model

19TODO: Reference in a softwarwe engineering book?
20For example, languages such as Python and Haskell use whitespace and indentation as part of the language syntax, and

are not freeform.

http://code.google.com/p/iacleaner/


7.7 Model Verification 207

Figure 7.8: UML component diagram of the Model Verification Component Decomposition

instance, each with differing requirements and necessary resources; therefore, it is beneficial to have

an overall framework for model instance verification.

This component provides this model verification framework, which is implemented as the combi-

nation of four sub-components as illustrated in Figure 7.821. Essentially, each type of verification is

implemented as a set of verification rules (the Verification Rules component), executing on a particular

verification engine (the Verification Engine component), that operates on a particular model instance

(the Verification component).

GMF diagram editors integrate constraint violations registered through the EMF Validation frame-

work into the corresponding visual representation of a model instance. When a constraint violation is

detected on a model element, a problem is registered in the Eclipse problems view [104], and a graph-

ical annotation is displayed on its visual representation. For example, an invalid Sync Wire which

violates the constraint specified in Listing 23 will be displayed to the model developer as illustrated in

Figure 7.9.

In this section, the implementation of the four selected verification engines as discussed earlier in

Section 6.6 – openArchitectureWare Checks, OCL through the EMF Validation Framework, CrocoPat

and NuSMV – will be discussed. With the exception of Checks, each of these components are im-

plemented as a separate set of OSGi bundles, allowing for verification to occur independently of the

development process as configured by a model developer.

7.7.1 Model Verification with Checks

The Checks language forms part of the openArchitectureWare platform [76], and provides a model

instance verification syntax that is a hybrid of Java and OCL. Due to the ease of implementation and

framework functionality of openArchitectureWare, this technology was selected in Section ?? as the

ideal technology to implement constraints within a function-based verification language.

Consequently, the Checks-based Verification Engine component is provided by the openArchi-

tectureWare 4.3.1 framework, and the Checks-based Verification Rules component is a collection of

69 constraints. These constraints are provided through the code generation plugin, as model instance

21Similarly to the decomposition of the Model Completion component, this also represents an ideal-world situation where

verification rules may be executed using different verification engines without any loss in functionality, which are one of the

aims of the JSR-94 [?] and SBVR [?] specifications.
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Figure 7.9: Visualisation of model instance constraint violations within a diagram editor

context model::wires::SyncWire ERROR "A SyncWire cannot connect to itself":

from != to;

Listing 23: Implementation of a Checks constraint for Sync Wires

verifier is always executed as a prerequisite of code generation. All of the constraints placed on the

IAML metamodel throughout Appendix ?? were implemented in terms of Checks constraints. For

example, the constraint that a Sync Wire cannot connect the same element together is provided here

in Listing 23.

For the Checks implementation of the Model Verification component, the Verification

Engine component is provided by the org.openarchitectureware.dependencies and

org.openarchitectureware.workflow OSGi bundles; and both the Verification Rules and

Verification components are provided by the org.openiaml.model.codegen.php OSGi bun-

dle.

7.7.2 Model Verification with OCL in the EMF Validation Framework

While most metamodel constraints are defined and verified using the openArchitectureWare Checks

verification component, there are a number of metamodel constraints defined earlier in Chapter 5

which are defined in terms of OCL. It is therefore desirable to reuse these OCL constraints, to improve

the robustness of the resulting model instances and prove these constraints are correctly implemented.

As discussed earlier in Section 6.6.7, OCL is a functions-based verification language that also supports

a form of higher-order logic.
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<constraint statusCode="1" severity="ERROR" lang="OCL"

name="Value constraint 1" id="ocl1">

<message>Values must be type XSDSimpleType or EXSDDataType</message>

<target class="Value"/>

<!-- the OCL expression -->

<![CDATA[

self.type->isEmpty()

or self.type.oclIsKindOf(xsd::XSDSimpleTypeDefinition)

or self.type.oclIsKindOf(model::EXSDDataType)

]]>

</constraint>

Listing 24: Implementation of a OCL constraint for Values in the EMF Verification Framework

As these constraints are also not defined in a recursive fashion – one of the considerations of

the verification technology evaluation discussed earlier in Section 6.6.7 – these constraints may be

implemented using the EMF Validation Framework. It is preferable to use this OCL implementation

over the Dresden OCL2 toolkit as this framework is a member of the Eclipse ecosystem and well-

integrated into EMF-based metamodels. OCL constraints are implemented as part of the plugin.xml

plugin manifest file of an Eclipse plugin [104]22.

All of the constraints placed on the IAML metamodel throughout Chapter 5 were therefore im-

plemented using the EMF Validation framework. For example, one of the constraints defined in Fig-

ure 5.6 – where a Value must define a type of either type XSD Simple Type or EXSD Data Type – is

implemented within the EMF Validation framework as an OCL constraint in Listing 24.

For the OCL implementation of the Model Verification component, the Verifica-

tion Engine component is provided by the org.eclipse.emf.validation and

org.eclipse.emf.validation.ocl OSGi bundles; and both the Verification Rules and

Verification components are provided by the org.openiaml.verification.oclOSGi bundle.

7.7.3 Model Verification with CrocoPat

The CrocoPat framework [27] discussed earlier in Section 6.6.4 was selected as the ideal technol-

ogy to implement constraints using a relations-based verification language, as CrocoPat supports the

higher-order operator TC of transitive closure on relations. As the CrocoPat engine is written in C,

the component is not normally provided as an OSGi bundle; but for ease of implementation and com-

ponent reuse, it has been manually wrapped into a bundle. At the time of writing, only the infinitely

redirects constraint is implemented; this constraint has been discussed earlier in Section 6.6.4 and

illustrated in Listing 13.

For the CrocoPat implementation of the Model Verification component, the Verifica-

tion Engine component is provided by the org.sosy_lab.crocopat.cli OSGI bun-

dle; and both the Verification Rules and Verification components are provided by the

org.openiaml.verification.crocopatOSGi bundle.

22TODO Need to resolve issue 271: Cannot use OCL and OAW verification adapters together.

http://code.google.com/p/iaml/issues/detail?id=271
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7.7.4 Model Verification with NuSMV

Finally, the NuSMV framework [48] discussed earlier in Section ?? was selected as the ideal tech-

nology to implement model checking. Similarly to the CrocoPat engine, the NuSMV engine is not

provided as an OSGi bundle, but is manually wrapped into a bundle.

At the time of writing, only two constraints had been implemented using NuSMV; the infinitely

redirects constraint as implemented earlier in Listing 19, and a constraint that tries to identify infinite

execution loops expressed within an Activity Operation. Since the IAML model instance must first be

translated into a textual NuSMV input format, a model-to-text transformation must be executed; these

transformation templates are also implemented in the openArchitectureWare language.

[?] uses a similar approach to implement model checking of design properties of WebML model

instances by specifying properties in the LTL language. This approach also uses model transforma-

tions to translate a system into a representation suitable for evaluation, and uses a combination of QVT

and XSLT to implement these transformations.

For the NuSMV implementation of the Model Verification component, the Verification Engine

component is provided by the it.itc.irst.nusmv.cliOSGI bundle; and both the Verification

Rules and Verification components are provided by the org.openiaml.verification.nusmv

OSGi bundle.

7.8 Model Actions

A separate Model Actions component integrates the components discussed throughout this chapter, and

provides a user interface to access their functionality. In a similar fashion to the user interface pro-

vided by the Diagram Actions component, this user interface is implemented through context-sensitive

menus through the Eclipse framework. Seven actions are defined to operate on model instances, i.e.

iaml files.

1. Infer all elements: This action executes the model completion rules of the Model Completion

component on the selected model instance, replacing the original model instance.

2. Generate code: This action first evaluates model completion against the given model instance,

and then executes the code generation templates in the Code Generation component to generate

an executable web application. By default, this generated code is placed into a directory named

output within the current Eclipse project.

3. Generate code and load in browser: This action extends the generate code action to also load

the generated application using the system web browser, if one is available. The URL of the

generated application is taken from the runtimeUrl property of the Internet Application.

4. Migrate model to latest version: This action evaluates the model migrators of the Model Mi-

gration component on the given model instance. If the current model instance can be suc-
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cessfully migrated to the latest version of the metamodel23, then the original model instance is

replaced with the migrated instance.

5. Remove phantom edges: During the development process of a model instance, instances of

Wires or ECA Rules may lose their from and to references, causing constraint violations since

they cannot be visualised. This action searches a model instance for instances of these phantom

edges and removes them, since they will have no behavioural effect on the generated application.

6. Rewrite generated element IDs: As described in the specification for Generated Element,

all elements have an associated ID attribute, which is initialised at creation time into a system-

unique value24; however, these initial values are fairly verbose, such as model.126aaefae53.29.

This action relabels element IDs to a more human-readable format; for example, an Input Text

Field instance may be renamed to text1. Future work includes reimplementing the unique ID

algorithm to render this operation unnecessary25 .

7. Export to DOT: If the elements in a model instance are considered as nodes, and the rela-

tionships between the elements as edges, then the model instance can be considered a directed

graph. This action exports the selected model instance into a format that may be passed to DOT,

as illustrated by Wright and Dietrich [324].

A single action is defined to operate on folders of model instances – or within Eclipse terminology,

on instances of IContainer workspace elements.

1. Migrate all IAML models: This action recursively searches through the selected container to

identify IAML model instances, and attempts to migrate each model instance according to the

Model Migration component. Any problems identified are aggregated into a single issue, and

presented to the developer at the end of the migration process. This action is particularly useful

for migrating suites of example models, and was very useful in the development of the test suite

of model instances as discussed in Section 7.9.

The corresponding OSGi bundle for the implementation of the Model Actions component is

org.openiaml.model.actions.

7.9 Tests

A design goal discussed earlier in this thesis in Section 5.1.3 was to develop the proof-of-concept im-

plementation of IAML simultaneously with the production of a suite of automated tests. As described

in Section 2.7.3, a well-designed suite of test cases can be used to improve the quality and reliability

of the developed software. Consequently, each of the components discussed in this chapter have been

implemented according to a range of automated JUnit test cases, within individual OSGi bundles.

In particular, the suite includes tests for the model completion framework and rules; the code

generation framework and templates; metamodel and diagram model consistency; release quality tests;

23A “successfully migrated model instance” is one which can be loaded through EMF without any warnings or errors.
24This unique value is a combination of the package name, the time of package initialisation, and a package-specific

counter; this generally guarantees uniqueness with O(1) computational complexity, since the model instance does not need

to iterate through the model.
25Issue 25: More descriptive generated IDs.

http://code.google.com/p/iaml/issues/detail?id=25
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and general integration tests. A separate diagram test suite is also defined for testing aspects of the

diagram editors themselves, such as the breadcrumbing, container names, and diagram partitioning

aspects of the diagram editors.

In order to test the model-driven aspect of the implementation, it was necessary to develop test

models that could be evaluated. Consequently, this test suite included the creation of a large suite of

test model instances, which at the time of writing included at least 244 model instances. This suite

of test models has also been used to evaluate the performance of model completion using the Drools

engine, and also to demonstrate the non-trivial nature of model completion [324].

The corresponding OSGi bundles for the implementation of the Tests component are

org.openiaml.model.tests and org.openiaml.model.tests.diagram.

7.9.1 Model-driven Code Coverage

During the development of the proof-of-concept implementation of IAML, a brief experiment was

performed where code coverage techniques were applied throughout the code generation process.

Because a source IAML model instance is transformed many times – through model completion, code

generation, runtime libraries, and executed on any number of target platforms – the concept of code

coverage can be extrapolated into the concept of model-driven code coverage, which applies common

code coverage metrics to each individual step of the model transformation process.

As discussed by Nagappan and Ball [218, pg. 417], code coverage is “an important metric by

which the extent of testing is often quantified,” based on the premise that errors cannot be detected

within software unless the error is tested. Conversely, code coverage may also be used to identify

portions of the source code that is never executed, and to an extent this unused source code may be

removed safely in order to improve the simplicity and quality of the software itself.

Code coverage metrics need to be aggregated across a number of different runs of the instrumented

software, with each run provided a different set of valid input values. The suite of test cases and test

models introduced in this section are designed to exhaustively test the complete implementation of

IAML, and therefore form an ideal suite of test data for this process. These code coverage metrics

may therefore be automatically captured while these tests are evaluated.

For example, the code generation templates in Section 7.6 may be annotated with four different

types of coverage through this aggregation, as illustrated in Figure 7.10: templates that are never

used; templates that are generated, but never executed; templates that are executed by the web server;

and templates that are executed by the client (web browser). This figure shows that the source code

generated by this particular template is executed on both the client and the server; parts of the generated

code are never executed; and parts of the template are never used to generate any source code.

The code coverage approach has also been used to evaluate the suite of model completion rules

used as part of the Rule Set component in Section 7.5.2. This is achieved by extending the behaviour

of the insertion queue component of model completion to also keep track of the source rule that

inserted each element. Model completion rules that are never used across any test case may therefore

be candidates for removal from this suite; conversely, this evaluation has shown that all of the current

model completion rules summarised in Appendix G are necessary to implement the intended behaviour

of the IAML metamodel.
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Figure 7.10: Illustrating code coverage of code generation templates by annotating client-side

and server-side functionality

7.10 Conclusion

In this chapter, the proof-of-concept implementation of a modelling environment for the develop-

ment, code generation and verification of IAML model instances has been discussed. In particular,

the implementation has been designed as the combination of a number of independent components,

which are supplied as OSGi bundles. This implementation will be used to evaluate both the modelling

environment and the IAML modelling language itself, as discussed in the next chapter.





Chapter 8

Evaluation

Throughout this thesis the design, description and proof-of-concept implementation of the Rich In-

ternet Application modelling language IAML has been discussed. This chapter will focus on the

evaluation of this research and these contributions in terms of the five evaluation criteria discussed

earlier in Section 5.1.4.

8.1 Feature Comparison

As discussed in Section 2.3, one of the first steps of this research involved the identification of features

that a RIA modelling language should possess. These features were then used to evaluate the range of

existing modelling languages for web applications, as published in Wright and Dietrich [323]. This

feature comparison will now be re-evaluated on the current IAML implementation, in order to compare

this language with existing web application modelling languages, and each evaluation will be reflected

in the feature comparison table illustrated later in Table 8.2.

• Events: The concept of an event-condition-action rule is a fundamental concept of the IAML

metamodel, represented as the associations between Events, Conditions and Actions and ex-

pressed as an ECA Rule. Arbitrary events cannot be defined by the model developer, as this

would require the inclusion of an event modelling language as discussed earlier in Section 5.6.

IAML does not currently support any time-based events.

• Browser Interaction: IAML does not implement any form of browser interaction, such as

navigation, cookies, identifying user agents or opening new windows. However, many of these

requirements have been conceptually designed to fit into IAML as discussed in the next section,

and this effort remains future work.

• Lifecycle Management: Lifecycle support in IAML is supported by the definition of Events in

Scopes – such as the onInit and onAccess events of Sessions. There is little support for events

at the end of a lifecycle – for example, an Email provides an onFailure event – and future work

may include defining events such as onDelete or onTimeout.

• Users: As discussed in Section 5.9, IAML natively supports the definition of role-based ac-

cess control mechanisms through Roles providing Permissions. However, there is no modelling

support for the interactive collaboration between users.
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Modelling Concept Existing Metamodel Level of Reuse

Primitive types XML Schema [299] Complete

Domain types EMF Ecore [279] Partial

Operations UML activity diagram [227] Adapted

Users and security RBAC [261] Adapted

Table 8.1: Reuse of existing metamodels in the IAML metamodel

• Security: As discussed in Section 5.9, access to Scopes can be restricted using combinations of

Gates, Access Control Handlers and Login Handlers. Future work includes the development of

model verification techniques to verify the security of these approaches.

• Databases: IAML supports the definition of primitive types using the XML Schema datatype

metamodel, and complex domain types using the EMF Ecore metamodel. Both of these meta-

models are platform-independent, allowing for domain-specific data to be represented across

any type of database. However, there is not yet any support for common database concepts

such as views, joins or sub-selects. There is also no support for modelling offline data, or for

uploading files.

• Messaging: Messaging is supported through RSS feeds and Emails. As discussed earlier in

Section 8.2 support for other types of web services has been designed, but these modelling

concept have not yet been implemented.

• UI Modelling: A limited range of user interface components, such as Input Text Fields and

Maps, are natively supported in the metamodel, as illustrated earlier in Section 5.12. However,

there is no way to define new types of user interface components, except through the EMF-based

extension of the IAML metamodel. Complex user interface functionality can be simplified into

design patterns represented as Wires. Low-level visual properties such as fonts and colours are

not part of the IAML metamodel, and generated applications are instead supplied with additional

templates, scripts and stylesheets.

• Platform Independence: As an important design goal of IAML, the language is designed to be

platform-independent with distinct components. Both the metamodel and the model instances

are serialised in the XMI format, permitting integration with other model-driven approaches.

The proof-of-concept implementation of the code generation component only supports a single

set of target platforms, but future work includes focus on additional platforms1.

• Standards: Standardised technologies and formats have been used wherever possible in the

development of the IAML metamodel and implementation, and a summary of these reused

metamodels is provided in Table 8.1. The implementation of each component is provided as

OSGi bundles, and reuse existing implementations wherever possible.

• Use of metamodels: The IAML metamodel satisfies both the metamodelling architecture and

viewpoint architecture of the MDA, as discussed in Section 3.1.5.

• Verification: The proof-of-concept implementation of IAML implements model instance veri-

fication using four different technologies, as discussed earlier in Section 7.7. Each technology

1This future work is discussed in further detail later in Section 9.2.6.
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Feature Category WebML UWE W2000 IAML

Events Ok - Poor Ok

Browser Interaction Poor - - -

Lifecycle Management Poor Good Poor Ok

Users Good Poor Poor Ok

Security Ok Ok Poor Good

Database Support Good Ok Poor Poor

Messaging Good Poor Ok Ok

UI Modelling Poor Ok Ok Good

Platform Independence Excellent Excellent Good Excellent

Standards Support Poor Excellent Excellent Ok

Use of Metamodels Poor Excellent Excellent Excellent

Verification Ok Ok - Excellent

Software Support Good Ok Poor Good

Table 8.2: A comparison of IAML against existing modelling language support for the general

feature categories of modelling Rich Internet Applications, adapted from Wright and Dietrich

[323]

uses a different verification language with different performance characteristics and resource

requirements, allowing a model instance developer to selectively evaluate certain classes of

constraints as necessary throughout the development lifecycle.

• Software Support: The IAML metamodel has been implemented in Chapter 7 using a wide

range of technologies into a proof-of-concept implementation, and this environment can be

used to develop web applications. This implementation is provided as free software under an

open-source license.

These evaluation results are reflected in Table 8.2, adapted from Table 2.1 earlier in Section 2.4.7.

It is important to note that the other languages have not been re-evaluated since it was first published;

for example, WebML has recently proposed additional support for more client-side interactivity and

user interface components [?, 316].

This comparison table suggests that the IAML metamodel and its consequent proof-of-concept

implementation satisfy more of the features necessary to model Rich Internet Applications than any

other existing language. However, this comparison table also illustrates that there are a number of

features, such as database support and standards support, which require attention in the future.

8.2 Modelling Requirements

To improve on the accuracy of the previous evaluation, each of the detailed requirements of RIAs used

in the design of the metamodel [322] can be individually evaluated against the current implementation

of IAML. These requirements represent the 46 requirements of Basic RIAs, and their evaluations are

provided here in Tables 8.3 and 8.4.

The implementation of a particular requirement is decomposed into four activities, as illustrated in

the legend of Table 8.5: the design of the requirement (D); the implementation of the requirement in the

IAML metamodel (M); the implementation of the requirement with code generation templates, visual
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syntax and test cases (I); and the validation of the requirement using the Ticket 2.0 benchmarking

application (V). These four activities represent the steps necessary in the hybrid modelling language

software process model, discussed earlier in Section 5.1.3; that is, a requirement must be designed

before it can be implemented, and implemented before it can be evaluated.

This detailed evaluation illustrates that all of the detailed modelling requirements of Basic RIAs

have been considered in the design of the IAML metamodel, but due to time constraints they have

not all been fully implemented and validated. Their implementation remains future work, and it is

expected that the implementation of the remainder of these modelling requirements would improve

each element in the feature comparison evaluation of IAML in Table 8.2 to “excellent”.

8.3 Benchmarking Application Implementation

As discussed in Section 2.5, the benchmarking application Ticket 2.0 was developed in order to eval-

uate the functionality of a RIA modelling language within a single application. This application com-

bines all of the detailed feature requirements of a Full RIA into a single application [322], and can

be used to benchmark many different languages by comparing different implementations of the same

application.

Such a comparison forms one of the evaluation criteria of the IAML proof-of-concept implemen-

tation against a web application implemented manually – that is, one developed with conventional

web programming languages such as PHP and Javascript, without using any model-driven technolo-

gies. The system metrics discussed earlier in Section 2.6.3 will be evaluated against each application

to compare them; this is necessary as Symfony applications are implemented in a variety of different

scripting and configuration languages, whereas IAML applications are implemented as XMI model

instances with additional templates.

The development metrics will also be split based on generated code, library code, and manually-

written code in order to highlight the manual effort necessary for each application, and illustrate how

much functionality is generated or provided by the framework. In Appendix I, these metrics are re-

evaluated against each of the different languages used in each implementation.

8.3.1 Implementation in Symfony

To develop the manual implementation of Ticket 2.0, the Symfony framework [243] was selected as a

basis of the approach, as this framework provides a clean approach to web application design through

the use of modules, plugins, actions and views. Using a framework to implement the application is

appropriate, as complex web applications are rarely implemented from scratch.

The Symfony framework is implemented in the PHP general-purpose language, and provides web

applications using HTML, Javascript and CSS. Symfony uses the YAML language to simplify the

configuration of framework functionality, as YAML provides a simple human-readable text-based

representation of tree-based data [?]. Symfony also utilises a significant number of other open-source

frameworks, such as Propel or Doctrine for database access [243]; PHPUnit for unit testing [325]; and

Prototype or jQuery for a client-side Javascript framework [249, 184].

The implementation of Ticket 2.0 in Symfony as Ticketsf was fairly straightforward, and released

under an open-source license online2. All of the requirements of Ticket 2.0 [322] were successfully

2The source code of Ticketsf is available online through Sourceforge, and is available under the Eclipse Public License

[71] at http://sourceforge.net/projects/iaml.

http://sourceforge.net/projects/iaml
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# Requirement D M I V IAML Support

Data

D1 Static Pages X X X X Frame

D2 View Data X X X X Domain Iterator

D3 Update Data X X X X Domain Iterator

D4 Pagination X X X Domain Iterator

D5 Provide Data Feed X X X X Frame (RSS only)

D6 Use Web Services X X X Frame (RSS only)

D9 Web Service Provider X Frame

D10 Uploading Files X Datatypes

D11 Access Server Data X X X X Value, Domain Attribute Instance

D12 Local Variables/Data X X X X Value, Temporary Variable

D13 Cookies X A Value within a new Scope

Events

E1 Scheduled Events X A timed Event

E2 Client Timer Support X A timed Event

E3 Server Timer Support X A timed Event

E4 Async Form Validation X X X X Datatype validation

E5 Client Form Validation X X X X Datatype validation

E6 Server Form Validation X X X X Datatype validation

E8 Browser-Based Chat X Implemented manually

Users and Security

S1 User Authorisation X X X X Access Control Handler

S2 Session Support X X X X Session

S3 User Logout X X X X Login Handler

S4 Automatic User Auth X Login Handler extension (see D13)

S5 User Security X X X Permission

S6 Group Security X X X X Role

S7 Security Levels X X X X Role-based Access Control

S8 Single Sign-In Solutions X X X iamlOpenIDURL type through Gate

S9 Personalisation X X X X Domain Attribute

User Agents

A1 Browser Identification X Values within a new “browser” Scope

A2 User Redirection X X X X ECA Rule to a Frame

A3 Multiple Browser Support X X Additional code generation templates

A4 Multiple Outputs X X X X Frame: HTML, RSS

A5 Client-Side Application X X X Visible Thing

A7 Back Button Control X Event

A10 Navigation Control X Hash Fragment (like Query Parameter)

Table 8.3: Evaluation of the modelling requirements of Basic RIAs against IAML (1), adapted

from Wright and Dietrich [322]
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# Requirement D M I V IAML Support

Interaction

T1 E-Mailing Users X X X X Email

T2 E-Mail Unsubscription X Email with library support

T3 Mobile Phone Comm. X Similar to Email

User Interface

U2 Client-Side Scripting X New client-side Events

U3 Drag And Drop X Event or Wire

U4 Loading Time Support X Event

U5 Keyboard Shortcuts X Event

U6 Opening New Windows X ECA Rule attribute

U7 Pop-Up Dialog Boxes X X X alert Operation

U8 Runtime Interface Updates X X X X Only after callbacks

U10 Modal Dialogs X Visible Thing attribute

U12 Provide External Libraries X X X X IAML runtime library

Table 8.4: Evaluation of the modelling requirements of Basic RIAs against IAML (2), adapted

from Wright and Dietrich [322]

Key Requirement Count

D Designed: Introduced in Chapter 4 46 (100%)

M Modelled: Implemented in the EMF metamodel 27 (59%)

I Implemented: Tested with test cases and examples 26 (57%)

V Validated: Successfully implemented in the Ticket 2.0 application 20 (43%)

Table 8.5: Legend to the modelling requirements evaluation of IAML

implemented in this application. A number of issues were discovered during the implementation of

the language, and these issues were used as inspiration for portions of the IAML design. These issues

included:

1. Particular components, such as login over SSL, PDF creation and internationalisation (“i18n”),

were supported natively or as Symfony plugins. This meant that much of the development effort

focused on integrating plugins, rather than implementing components from scratch.

2. Some application requirements such as the Flash-based MP3 player were not available as Sym-

fony plugins, but the development of new plugins to satisfy these goals was fairly straightfor-

ward.

3. When designing the ticketing client-side application, an identical server-side application had to

be implemented simultaneously. Consequently, some portions of the business logic had to be

reimplemented in both PHP and Javascript, because there was no easy way to translate between

the two. Web application testing frameworks such as PHPUnit [325] and JWebUnit [134] may

be used to verify the consistency of these logics.

4. Each of the different secured parts of the application – for example, the public site, the user

site, and the administrator site – are each implemented as a separate “application” according to

Symfony. However, each application is intended to work independently of the other, making it

difficult to integrate these sites together.
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Figure 8.1: A screenshot of the Browse Events page implemented in Ticketiaml

Figure 8.2: A screenshot of the View Event page implemented in Ticketiaml

8.3.2 Implementation in IAML

The implementation of Ticket 2.0 in IAML as Ticketiaml was performed once the IAML metamodel

had been completed as discussed in this thesis. The implementation of Ticketiaml is similarly released

under an open-source license, with the source code available online3. The IAML model instance for

Ticket 2.0 is also provided in visual and textual form within this thesis in Appendix J.

A screenshot of the Ticketiaml implementation of the page Browse Events is illustrated here in

Figure 8.1. On this page, a list of all of the events in the system are displayed, along with an interactive

map showing their addresses. If one of these listed events is selected, the View Event page in Figure 8.2

is displayed, which displays more information about the particular event, along with a more detailed

map of its address.

As the design of IAML includes support for common reusable patterns of web applications –

such as access control, data access, mashups and visual element design – the implementation of these

features in Ticketiaml were straightforward. However, other concepts that are not yet implemented

as discussed in Section 8.2 – such as populating foreign keys, or overriding or extending the model

3The source code of Ticketiaml is hosted within the IAML project, and is available under the Eclipse Public License [71]

at http://openiaml.org/ticket20/.

http://openiaml.org/ticket20/
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completion process – were difficult, and their implementation required more effort.

Model completion was used heavily in the implementation of Ticketiaml, such as automatically

completing the contents of Input Forms through Sync Wires, and utilising the generated functionality

of Login Handlers to protect Scopes. However, in two situations the intent of model completion

rules was not clear, and the developer had to read the source code of the model completion rules

themselves4.

Unfortunately, the full requirements of the Ticket 2.0 application could not be completed using the

current IAML implementation, and only 22 of the original 123 requirements of the application could

be implemented. A number of system resource limits were hit during the implementation of the model

instance5, and no resources were available to optimise the implementation of the language further.

The underlying technologies for model completion and code generation routinely deal with model

instances larger than those generated through IAML [?], and there are no known theoretical or design

limits that would prevent the full implementation of Ticket 2.0 using IAML. Additional development

on the IAML implementation is therefore necessary, and performance has already been a development

focus6. It is important to note that performance is not a focus of this research, however there are a

number of approaches that may be used to resolve these problems, as discussed later in Section 9.2.7.

8.3.3 Re-implementation in Symfony

As it would not be possible to evaluate the Symfony-based implementation of Ticket 2.0 with the in-

complete IAML-based implementation in any meaningful way, the decision was made to reimplement

Ticket 2.0 in Symfony to match the implemented features of Ticketiaml. This smaller implementation

of Ticket 2.0 was implemented in Symfony 1.4.8 as Ticketsf-mini, and exactly matches the features of

Ticketiaml. The implementation of Ticketsf-mini is similarly released under an open-source license,

with the source code available online7.

This reimplementation was fairly straightforward and once again, highlighted the same issues

discovered during the implementation of Ticketsf ; namely, client-side and server-side logic must be

implemented in two different languages (PHP and Javascript) and kept consistent throughout the de-

velopment process. Screenshots of the Ticketsf-mini implementation of the pages Browse Events and

View Event are illustrated here in Figures 8.3 and 8.4.

8.3.4 System Metrics Evaluation

These two different implementations of the same benchmarking application can be compared through

the system size metrics described earlier in Section 2.6.3, and these metrics are provided here in Ta-

ble 8.6. The file-specific metrics can be broken down based on the proportion of manual development

effort8; the results of these metrics against the manual implementation effort is provided in Table 8.7.

4TODO: In order to improve the usability of model completion, the model completion rule intentions should be available

within the model instance development environment itself.
5For example, the architecture-specific maximum heap spaces for the Sun Java virtual machine were repeatedly reached

when performing model completion and code generation [161].
6For example, issues 184, 210 and 261 have focused on the performance of model completion, and issues 117 169 and

181 have focused on the performance of code generation.
7The source code of Ticketsf-mini is hosted within the IAML project, and is available under the Eclipse Public License

[71] at http://openiaml.org/ticket20/.
8In this evaluation, manual effort is defined as code which requires manual development effort in order to implement a

requirement. This includes new source code files and manual changes to generated code, but does not include generated

source code that does not require any modification, nor runtime libraries provided by the application framework.

http://code.google.com/p/iaml/issues/detail?id=184
http://code.google.com/p/iaml/issues/detail?id=210
http://code.google.com/p/iaml/issues/detail?id=261
http://code.google.com/p/iaml/issues/detail?id=117
http://code.google.com/p/iaml/issues/detail?id=169
http://code.google.com/p/iaml/issues/detail?id=181
http://openiaml.org/ticket20/
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Figure 8.3: A screenshot of the Browse Events page implemented in Ticketsf-mini

Figure 8.4: A screenshot of the View Event page implemented in Ticketsf-mini
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Metric Ticketsf-mini Ticketiaml Difference

Tasks 22 (18%) 22 (18%) -

Time (weeks) 1 1 -

NDev 1 1 -

FC (changes) 229 43 -81%

Rev 21 19 -10%

DTech 9 7 -22%

DMedia 1 1 -

Table 8.6: Comparing two Ticket 2.0 implementations using system metrics: overall develop-

ment effort

Metric Ticketsf-mini Ticketiaml Difference

Files (files) 45 7 -84%

Size (bytes) 49,390 46,998 -5%

NCLOC (lines) 1,010 606 -40%

ALOC 22.44 86.57 286%

Table 8.7: Comparing two Ticket 2.0 implementations using system metrics: manual effort

These values can be used to make a number of observations on each systems’ implementation.

These metrics suggest that an IAML-based web application requires less manual development effort

with fewer implementation technologies than a Symfony-based web application, and the reduction in

implementation technologies are illustrated in Appendix I. However, as only one benchmarking appli-

cation has been evaluated, additional evaluations are necessary in order to strengthen this observation.

Compared to the Symfony implementation, the IAML implementation required significantly fewer

file changes (FC). This is due to the different architectures of each implementation; IAML source code

is designed to be provided as a single model instance with additional platform-specific templates and

includes, whereas Symfony source code is designed to be provided across a range of subtypes on

generated framework code and classes. This is also reflected in the difference in the number of files

(Files) between the two implementations, highlighted in the file-based metrics of Table 8.7.

The IAML implementation also required fewer lines of code (NCLOC) than the Symfony imple-

mentation; this may be due to the differences between PHP scripts and XMI instances; the former is

designed to be human-editable, whereas the latter is designed to be machine-readable. This difference

is also reflected in the average lines of code per file (ALOC). These results are also a consequence of

the architecture of the IAML implementation; the flexibility of EMF allows for a model instance to

span many XMI files if necessary [279, pg. 404–415].

8.4 Metamodelling Metrics

To evaluate the quality of the underlying metamodel, the suite of metamodel metrics defined earlier

in Section 2.6.2 will be evaluated against both the IAML metamodel and a suite of other metamodels

related to model-driven development. The results of this evaluation are provided here in Table 8.89;

9In this table, the results produced by Monperrus et al. [210] could not be reproduced, as they had modified the original

Ecore metamodel. Consequently, the metrics provided here have been regenerated from the most recent version of the Ecore
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Metamodel TNP NoC NoAC TNoR TNoA NoD NoE Nav Cont Dat

UML 1 247 48 480 106 17 13 0.33 0.38 0.18

GMF Notation 1 69 6 31 68 17 13 0.13 0.52 0.69

XSD 1 57 22 125 98 25 20 0 0.32 0.44

OCL 1 52 9 4 1 0 0 0 0.25 0.20

ModelDoc 1 33 4 62 55 1 1 0.55 0.44 0.47

Ecore 1 20 5 48 33 32 0 0.33 0.38 0.41

IAML 9 103 43 126 39 8 7 0.41 0.52 0.24

UWE [?] 10 319 59 533 155 19 15 0.36 0.34 0.23

WebML [?] 17 122 21 200 205 12 12 0 0.66 0.51

Table 8.8: Using metamodel metrics to evaluate the IAML metamodel against other similar

metamodels, adapted from Monperrus et al. [210] and Vépa et al. [292]

in this table, each metric has been applied against the most recent Ecore representation of each meta-

model.

These metamodel metrics are also applied to Ecore-based implementations of the UWE and

WebML metamodels. The UWE metamodel used in this evaluation is the most recent Ecore ver-

sion of the UWE metamodel as provided through the UWE4JSF project proposed by [?]. Since the

UWE metamodel is defined as an extension to the UML metamodel, the UWE metamodel includes

all of the packages, classes and references of the UML metamodel; for example, the UWE metamodel

defines the class PresentationElement as a subtype of the UML class Class.

At the time of writing, the implementation of the WebML metamodel in the latest version of We-

bRatio (6.1.0) was provided using a proprietary MDA-incompatible architecture (DTDs and XMLs of

units) which is not unified into an overall metamodel. However, the AspectWebML project proposed

by [?] extracted an Ecore-based metamodel from these DTDs, based on work by [?]. The WebML

metamodel uses a lot of attributes, since they do not distinguish between a PIM and PSM; for example,

concepts such as server port numbers are defined as attributes on model elements, whereas they should

be defined as platform-specific configuration attributes provided to the code generation templates, or

as arguments to the runtime environment.

The metamodelling metrics for the number of classes (NoC) and abstract classes (NoAC) are also

illustrated here in Figure 8.5. These metrics show that the IAML metamodel relies heavily on abstract

classes, with a higher proportion of abstract classes than other metamodels. In particular, the IAML

metamodel heavily uses model concepts to represent the source and targets of relationships; for exam-

ple, the interfaces of Requires Edges Source and Requires Edge Destination are used as the source

and target of a Requires Edge, as Ecore metamodels do not support the concept of type unions.

The different design architectures of each modelling language are also illustrated here in Fig-

ure 8.6, showing the results of the total number of references10 (TNoR) and attributes (TNoA) for each

modelling language. This illustrates that the WebML metamodel is heavily oriented around attributes,

whereas the majority of other languages are oriented around references, and the IAML metamodel fol-

lows a similar architecture. This is also illustrated by the Dat metric, which represents the proportion

of attributes to structural features in the metamodel.

metamodel.
10TODO: The TNoR metric is linearly correlated with the NoC metric, with an R2 = 0.94. Is this significant enough to

mention here?
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Figure 8.5: Comparison of the number of classes (NoC) and abstract classes (NoAC) of the

IAML metamodel against other similar metamodels

As discussed by Monperrus et al. [210], the metrics for Nav, Cont and Dat are believed to give

information on the modelled domain and the modelling styles and practices, but a balance between

these values has not been determined. The Nav metric represents the opposite navigability of ref-

erences through eOpposite, simplifying development of model-driven tools such as code generators.

The Cont metric represents the proportion of references that are containment references, in that one

element can “contain” another element, and may illustrate the modelling architecture used. However,

it is not desirable for this metric to be at either of the extremes, suggesting that a modelling language

is too unstructured, or conversely too structured.

Importantly, the metamodelling metrics evaluated in this section highlight that the IAML meta-

model uses less classes, abstract classes, references and attributes than the existing web application

modelling languages of WebML and UWE. This may suggest that the IAML metamodel is simpler

than these existing metamodels, but a functionality-based evaluation between these languages is nec-

essary to conclude that this simplicity does not negatively impact the functionality of the language.

8.5 Visual Model Evaluation

As discussed earlier in Section 5.1.4, the visual notation of the IAML metamodel will be evaluated

according to two evaluation criteria discussed earlier in Section 4.10, in order to judge the effectiveness

of this proposed visual syntax.
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Figure 8.6: Comparison of the total number of references (TNoR) and attributes (TNoA) of the

IAML metamodel against other similar metamodels

8.5.1 Notation Information Capacity

In Table 8.9, the visual syntax of IAML is evaluated for cognitive effectiveness against the information

capacity of each visual syntax variable, discussed as earlier in Section 4.10.1. This evaluation shows

that the visual syntax of IAML does not exceed any of the maximum information capacities for each

of these syntax variables.

For example, there are currently only five shapes used to distinguish between model shapes; only

two levels of textual brightness – black, and gray – are used; no textures are used as part of the notation;

and seven colours from the Eclipse palette are used for the basis of default colours. However, each of

these variables may be individually overridden at request of the user. A number of these variables are

not restricted by the syntax, and are defined by the user instead – for example, there is no limit to the

number of elements placed horizontally or vertically in a given model instance view.

This evaluation also highlights that the IAML visual syntax only uses five different shapes, yet

Moody [211] argues that an unlimited number of shapes can be used in the visual syntax for the

language in order to improve usability. In the future, this range of shapes should be extended to new

shapes for other modelling elements11; for example, Decision Nodes could be represented using a

diamond shape, or Domain Sources represented using a database shape.

8.5.2 Cognitive Dimensions Evaluation

The cognitive dimensions framework [118] may be used to evaluate a visual notation in a subjective

manner, as discussed earlier in Section 4.10.2 and illustrated by Grundy et al. [123]. This evaluation

11Issue 231: Add more shape styles for the visual syntax of model elements.

http://code.google.com/p/iaml/issues/detail?id=231
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Variable Power Capacity IAML Maximum

Horizontal position (x) Interval 10–15 n/a

Vertical position (y) Interval 10–15 n/a

Size Interval 20 n/a

Brightness Ordinal 6–7 2

Colour Nominal 7–10 7

Texture Nominal 2–5 0

Shape Nominal Unlimited 5

Orientation Nominal 4 1

Table 8.9: Evaluation of the information encoding capacity of IAML visual notation, adapted

from Moody [211]

has shown that the visual representation of IAML broadly satisfies each of the thirteen dimensions

of this framework. Many of these dimensions – such as secondary notation and visibility – are auto-

matically addressed to an extent through the GMF framework. This evaluation is discussed in further

detail in Appendix K.

8.6 Conclusion

In this chapter, the design and implementation of IAML has been evaluated within five evaluation

criteria. The results of these evaluations can be summarised as follows:

1. The IAML metamodel and its proof-of-concept implementation implement more of the features

necessary to model Rich Internet Applications than any existing modelling language for web ap-

plications. In particular, IAML has strong support for event modelling; platform-independence;

reusing metamodels; and the verification of model instances.

2. All of the Basic RIA modelling requirements have been used in the design of the IAML meta-

model. However due to resource and time constraints only 59% of these original requirements

have been implemented in the proof-of-concept modelling environment, and only 43% have

been validated as part of the Ticket 2.0 benchmarking application.

3. Since the IAML metamodel does not fully implement the requirements of a Full RIA, Ticket

2.0 cannot be fully implemented; resource constraints also prevented the implementation of

this application. However, preliminary results from this evaluation suggest that an IAML-based

implementation is comparable to a Symfony-based implementation, and reduces the number of

development technologies necessary for the implementation of a Rich Internet Application.

4. In terms of metamodelling metrics, the IAML metamodel can be considered simpler than the

existing metamodels of UML, UWE and WebML, but more complex than simpler metamodels

such as Ecore and OCL. These metrics also suggest that the overall architecture of the IAML

metamodel is similar to the architecture of other metamodels.

5. The proposed visual syntax of the IAML metamodel can be considered effective, through eval-

uating the maximum information capacity of the variables of its visual syntax, and evaluating

the overall implementation subjectively against the Cognitive Dimensions framework.
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TODO Is there anything else that I should conclude the evaluation chapter with?





Chapter 9

Conclusions and Future Research

In the thesis, the requirement capture, design, development and proof-of-concept implementation of

IAML – a new modelling language for the development of Rich Internet Applications – has been

discussed in detail. In this chapter, the main contributions of this research to the fields of software

engineering and model-driven development will be summarised, along with a brief discussion on

some outstanding research questions and future work for this research.

9.1 Research Contributions and Conclusions

9.1.1 Requirements for Modelling RIAs

As discussed earlier in Section 2.3 (pg. 13), the first step for this research was to identify the require-

ments that an RIA modelling language should satisfy, resulting in thirteen feature categories. This step

was necessary as existing web modelling language evaluations were not concerned with the interactive

requirements of RIAs.

These categories were then used to evaluate existing modelling languages in terms of their suit-

ability for modelling RIAs, and published by Wright and Dietrich [323]. This evaluation found that

no existing web application modelling language was expressive enough to support the requirements

of modelling RIAs, and the level of support for modelling events and user interfaces was particularly

poor.

Seven representative existing RIAs were also analysed to identify the specific requirements of a

RIA modelling language, by identifying the individual use cases that may be involved in the devel-

opment of an RIA. The functionality of these representative applications were therefore decomposed

into a set of 69 use cases, published in this thesis as Appendix A.

These use cases were then analysed and translated into a suite of 59 fundamental requirements

of RIAs, as published by Wright and Dietrich [322]. This list of requirements forms an important

contribution by providing formal definitions of RIA-specific functionality. These requirements were

used in the design of the IAML metamodel, and in the future could be used to evaluate existing

modelling languages with a greater level of detail than the previously discussed feature comparison.

9.1.2 A Benchmarking Application for Rich Internet Applications

A single RIA benchmarking application, called Ticket 2.0 [322] was then developed by combining

each of these 59 requirements of RIAs into a single application. This forms an important evaluation
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criteria into the development of RIA modelling languages by proposing a standardised benchmarking

application that may be used to evaluate the different implementations of RIA features within different

modelling languages.

To illustrate that this hypothetical web application represented a realistic RIA for benchmarking

purposes, this application was implemented using the web application framework Symfony [243] in

Section 8.3.1 (pg. 218). This application successfully implemented all of the requirements of Ticket

2.0, and the subsequent evaluation found that one of the key problems in the conventional imple-

mentation of RIAs is in keeping client-side and server-side logic synchronised across two different

languages (PHP and Javascript).

Ticket 2.0 was also implemented using the proof-of-concept implementation of IAML in Sec-

tion 8.3.2 (pg. 221) in order to identify the strengths and weaknesses of the current implementation

of IAML. By using design concepts of IAML such as wires and users, it was found that most of the

necessary scaffolding for the application could be generated automatically through model completion,

also suggesting that the use of model completion is beneficial within the development of RIAs.

Through the proposal of system metrics earlier in Section 2.6.3 (pg. 25), the development expres-

siveness and productivity of these two approaches could then be evaluated. This subsequent evaluation

illustrated that fewer development technologies are necessary for the implementation of an RIA, and

that less manual development effort is necessary to implement a subset of a requirements of Ticket

2.0 when compared to a similar implementation using Symfony. This evaluation also indicated that

additional optimisation effort on the proof-of-concept implementation of the language is necessary as

future work.

9.1.3 Modelling Language for Rich Internet Applications

The Internet Application Modelling Language (IAML) represents a significant contribution as a mod-

elling language for describing and developing RIAs. As evaluated in Section 8.1 (pg. 215), IAML

satisfies the design goal of platform-independence; reuses a variety of existing standards where ap-

propriate; and satisfies both the metamodelling architecture and viewpoint architecture of the MDA

[217, 165]. This language has been designed to support all of the concepts of modelling Basic RIAs,

and the full description of this language forms Chapter 5 and Appendix ?? in this thesis.

The design of IAML includes a number of novel modelling concepts, including some adapted from

existing modelling approaches, in order to reduce the effort necessary for web application developers.

Each of the concepts described in Chapter 5 represent an important contribution, but a number of these

are particularly noteworthy:

1. Logic-based Core: The core of the language is derived from first-order logic concepts, and

supports Functions, Conditions, Predicates and Complex Terms (pg. 90). By defining these

concepts in terms of an existing rigorous mathematical definition, this metamodel core provides

a strong foundation for the rest of the language.

2. Type System: IAML defines a rich underlying type system for model instances, composed of

primitive type modelling adapted from XML Schema datatypes [299] (pg. 99), and complex

domain modelling adapted from EMF Ecore [279] (pg. 105). New primitive types may be

defined through the derivation of existing types, and the domain modelling approach of IAML

supports multiple inheritance.



9.1 Research Contributions and Conclusions 233

The type system of IAML is statically checked; objects may only have a single type, allowing

for the type validity of a model instance to be checked during development. Types within IAML

are also weakly checked; typed objects may be implicitly cast to another type at runtime, and

objects may be typed to a default type (pg. 102).

3. Event-Condition-Action (ECA) Rules: The evaluation of existing modelling languages by

Wright and Dietrich [323] found that existing web modelling languages rarely include events as

a first-level citizen, despite that RIAs are heavily oriented around events. ECA rules are adapted

into IAML to capture this common design pattern, represented as an ECA Rule in Section 5.6

(pg. 115). However, IAML does not support developers defining their own arbitrary events, as

this would require the inclusion of an event modelling language.

4. Wires: Inspired by the connection concept in VisualAge for Smalltalk [186], the concept of

a Wire was introduced in Section 5.8 (pg. 122) to support reusing common development pat-

terns for RIAs, such as keeping the values of two model elements synchronised. To support

model developers overriding the default behaviour of Wires, this functionality is implemented

by evaluating model completion rules against a model instance.

5. Scopes: As discussed in Section 5.10 (pg. 130), Scopes permit the model developer to utilise

a variety of lifecycle events, such as when a Session is initialised or accessed. Scopes also

provides a natural way to define how different elements of data can be differently scoped, along

with the associated access and storage semantics of the immediate and indirect contents of each

Scope.

6. Users and Security: IAML allows model developers to define the potential users of RIAs

through the Role-Based Access Control security mechanism [261], represented as Roles and

Permissions in Section 5.9 (pg. 126). Through model completion, common functionality such as

login and authentication is provided through Login Handlers to reduce the manual development

effort necessary for these common RIA use cases.

Through the proposal of metamodelling metrics earlier in Section 2.6.2 (pg. 24), the expressiveness

and complexity of the IAML metamodel could be evaluated against a suite of existing modelling

languages. This subsequent evaluation in Section 8.4 illustrated that the IAML metamodel is simpler

than the existing metamodels of WebML and UWE, and the design of the language follows a similar

architecture to many existing languages.

9.1.4 Model Completion

As discussed by Wright and Dietrich [324], a key challenge in the design of a modelling language is

in balancing the level of detail expressible in its design; that is, its level of abstractness to its level of

flexibility. Software frameworks approach this problem by supporting programming by convention,

where documented conventions allow much of the scaffolding to be provided automatically by the

framework.

The concept of model completion adapts this concept to the model-driven development domain and

forms a significant contribution to the field of model-driven development, by representing documented

conventions as non-monotonic inference rules. These model completion rules may be implemented
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using the Drools rule engine (pg. 200), and the consistency of this approach is discussed by Wright

and Dietrich [324].

Importantly, model completion does not permit any original information in the original model to

be removed; this ensures that developer effort can never be overridden. This process may be manu-

ally overridden by the developer, and is implemented within IAML by using the Generated Element

abstract type as a supertype of all IAML model elements. Model completion is used to complete all

of the necessary scaffolding for reusable patterns such as Wires, Login Handlers, and to support the

inheritance of Domain Types.

9.1.5 Model Instance Verification

As discussed in Section 3.4 (pg. 52), model instance verification is the process of identifying invalid

models from syntactically correct models based on desired correctness constraints. In many cases it is

preferable to identify errors within a system model than in its implementation, as the relative cost of

fixing and error increases over time [247, pg. 197].

In this thesis, model instance verification was decomposed into three different categories, based

on the expressiveness of different verification languages: function-based languages; relations-based

languages; and through model checking, with each category possessing different performance charac-

teristics and resource requirements. By implementing model instance verification constraints within

each of these different categories, a model developer may selectively evaluate correctness according

to their available resources.

Within the proof-of-concept implementation of IAML, model instance verification has been im-

plemented through four different technologies as discussed in Section 7.7 (pg. 206). Simple con-

straints are evaluated using the EMF Validation framework and Checks; more complex constraints are

evaluated using CrocoPat; and the intended behaviour of the modelled applications are evaluated by

NuSMV using model checking. As discussed later in Section 9.2.9, the usability and understandability

of these implementations has not been evaluated, but remains future work.

9.1.6 Evaluation of Model-Driven Technologies

An important design goal of IAML was to provide a proof-of-concept implementation of the modelling

language, and such an implementation involves the integration of a number of different technologies.

Each of these technologies – such as model completion, model instance verification, and the metamod-

elling and graphical environments themselves – may be provided by a number of different technology

implementations.

The evaluation of many different implementation technologies for each of these model-driven

technologies forms an important contribution of this thesis, and is discussed in detail within Chapter 6.

Each implementation was evaluated according to the functionality and expressiveness necessary for

each technology; the ease at which each technology may be integrated together; and a qualitative

measurement of the implementation quality through the OpenBRR open source evaluation framework

[234].

The results of this evaluation were used to select a suite of implementation technologies used for

the proof-of-concept implementation of IAML. These technologies included the Eclipse Modeling

Framework (EMF) for a metamodelling environment; the Graphical Modeling Framework (GMF) for

a graphical modelling environment; the openArchitectureWare Xpand language for a code generation
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framework; the Drools rule engine for the implementation of model completion; and a selection of four

different languages to support different forms of model instance verification, in terms of the necessary

expressiveness of different constraints.

As one of the design goals of IAML, a visual syntax was also designed in Section 7.4.3 (pg. 193) in

order to support the graphical definition of IAML model instances. The effectiveness and simplicity of

this visual syntax was evaluated in Section 8.5 (pg. 226) against both its notation information capacity,

and against the Cognitive Dimensions framework.

9.1.7 Other Contributions

Through the process of designing, implementing and subsequent verification of a modelling language

for RIAs, a number of smaller contributions throughout this research have also been recognised. These

will only be briefly mentioned within this section.

An important consideration for the development of model completion rules is in providing ade-

quate and reliable documentation for these conventions [324]. The ModelDoc framework described by

Wright [321] was developed to allow this documentation to be automatically loaded from the model

completion rules themselves; this documentation can then be combined with other sources of docu-

mentation into an authorative documentation source. In particular, this documentation source forms

the basis of the IAML metamodel reference in Appendix ??.

During the development of the IAML visual modelling environment using GMF, it was recognised

that many of the GMF model instances used to generate these editors shared common features, yet had

to be implemented manually. To reduce the development effort necessary to maintain these graphical

editors, the SimpleGMF modelling language was developed in Section 7.4.3 (pg. 192) to generate

GMF model instances automatically.

In order to reduce the complexity of the implementation of each model-driven technology within

the proof-of-concept implementation, a model-driven code coverage technique was developed in Sec-

tion 7.9.1 (pg. 212). By obtaining these metrics through the evaluation of the exhaustive test suite for

IAML, any unused source code – including code generation templates and model completion rules –

could be removed to reduce the complexity of the implementation. These code coverage metrics could

also be used to improve the test suite itself, or to identify elements of the code generation templates

that are never executed within a particular platform.

9.2 Future Research

The research involved in this thesis has included contributions from a wide variety of research areas,

and has uncovered a number of unanswered research questions which remain future work; in this

section, some of these areas of future work will be briefly discussed. The proof-of-concept implemen-

tation itself includes a number of outstanding issues1, some of which will also be summarised in this

section.

9.2.1 Further Evaluation of Existing Web Modelling Languages

As discussed by Wright and Dietrich [322], existing web modelling languages have not been re-

evaluated against the list of 59 detailed RIA modelling requirements in Section 2.3.2 (pg. 16), with

1The list of outstanding issues is available online at http://code.google.com/p/iaml/issues/list.

http://code.google.com/p/iaml/issues/list
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the exception of the evaluation against IAML in Section 8.2 (pg. 217). Many of these languages

have continued to evolve and, in some cases, incorporate limited functionality for RIA concepts. For

example, recent work for the actively developed WebML environment includes improved support

for modelling client-side data and a new event model, as discussed by Fraternali et al. [93]. A re-

evaluation of these web application modelling languages would highlight the strengths and weaknesses

of the IAML metamodel with respect to recent developments.

While the development and publication of the Ticket 2.0 benchmarking application was an im-

portant original contribution of this thesis, this application specification only describes the design

requirements of Ticket 2.0, and does not specify the actual functionality of the benchmark. A web

application testing framework such as JWebUnit [134] could be used to develop integration test cases

that would independently evaluate the functionality of a certain implementation of Ticket 2.0, and

guarantee the completeness of each implementation; it would also significantly impact on developer

flexibility, as such a test suite would enforce many more constraints on an implementation. The test

suite could also be used to accurately profile the implemented applications for performance, and dif-

ferent implementations compared to identify potential areas for future optimisation work.

9.2.2 Modelling Full RIAs

The current design and implementation of IAML only supports the modelling requirements of Basic

RIAs. As discussed in Section 5.1.1 (pg. 81), this feature set restriction was necessary due to the time

and resource constraints of this research project. There do not seem to be any design issues that would

prevent the extension of IAML to support modelling Full RIAs, possibly through the definition of an

extension metamodel. For example, some of the enterprise requirements, such as offline storage and

internationalisation, could be defined through annotations on the existing model elements Scope and

Visible Thing, rather than the redefinition of their underlying concepts.

9.2.3 Improved Graphical Editor View Mappings

During the development of the proof-of-concept graphical editor of IAML using GMF, an unexpected

issue was discovered resulting from the level of abstraction of the interaction between the generated

editor and the underlying metamodel. As discussed on Section 1 (pg. 193), GMF-based editor def-

initions work best when there is a one-to-one mapping between graphical elements and underlying

metamodel elements. This means that without extending the generated graphical editor, one cannot

easily represent the aggregation or derivation of elements as a single graphical element.

Consider Figure 9.1a, where a Complex Term (in this case, a Simple Condition) is provided the

field value of a Changeable element as a Parameter. This field value is defined as the default Value for

that element, and it would be preferable to represent this as Figure 9.1b, where the Parameter instead

connects the Changeable element directly. For each of these visual representations, the underlying

model instance can be exactly the same – the only difference is in the simplification of the syntax.

By default, the generated graphical editor cannot support reducing Figure 9.1a into Figure 9.1b,

because the underlying one-to-one mapping model specifies that a Parameter must connect to a Pa-

rameter Value (and consequently a Value). Consequently, without the manual reconfiguration of the

generated graphical editor and the templates that generate it, it is easier to specify that Changeable is

a subtype of Value as syntactic sugar as discussed in Section 5.3.6, enforcing additional complexity

on the underlying metamodel.
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Input

: InputTextField

Type: xsd:string

Container: Parameter Example

fn:not

: XQueryFunction

Container: root

fieldValue

fieldValue

: Value

Type: xsd:string

Container: Input

condition

: SimpleCondition

parameter

: Parameter

(a) Referencing Values directly

Input

: InputTextField

Type: xsd:string

Container: Parameter Example

fn:not

: XQueryFunction

Container: root

condition

: SimpleCondition

parameter

: Parameter

(b) Referencing Values indirectly

Figure 9.1: Two approaches in defining a Complex Term that references a Value contained

within a Changeable as a Parameter

As the artefacts necessary to generate GMF graphical editors are also model instances of EMF

metamodels [121], it may be possible to define a new intermediary graphical mapping metamodel

– a view mapping model – between these artefacts to formally define this syntactic sugar. Model

transformations may then be used to transform the underlying metamodel and view mapping model

into the necessary GMF model instances. As SimpleGMF already follows a similar architecture, it

may be possible to extend this language into this desired view mapping metamodel.

9.2.4 Integrating Textual Expression Languages in the Visual Editor

The proof-of-concept implementation of the IAML metamodel has been designed to support a visual

representation for all of the underlying model instances. However, as shown earlier in Figures 5.23

and 5.24 (pg. 119), this approach can transform simple textual expressions into complex visual repre-

sentations of the same expression. In languages such as UML, this problem is resolved by allowing

constraints to be defined textually; in some cases expressions can be defined in terms of OCL [227],

where the main issue is in defining the mapping between textual syntax elements and the underlying

model instance.

Since this research was started, the EMFText project was proposed [?] which provides a textual

interface to model instances represented within EMF; the resulting syntax is similar to YAML repre-

sentations of configuration data [?]. The openArchitectureWare framework includes a similar textual

interface to EMF model instances called XText, however the authors of EMFText argue that XText

cannot be used to interface with existing metamodels [?]. An investigation into integrating such a

textual interface into the visual editor therefore remains future work; such a textual interface should

not involve any modifications to the underlying metamodel, as it would be a different representation

of the same underlying model.

9.2.5 Extraction of Reusable Components

As illustrated in Chapter 7, the development of the proof-of-concept implementation of IAML required

the development of a large number of components. Some of these components, such as the IAML

Metamodel and Runtime Library components, are domain-specific to the RIA domain; others such

as the Model Completion and Model Verification components may be reusable in other modelling

domains.
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This model-driven development environment generalisation has already been successfully used in

the development of the openArchitectureWare framework [76]. As discussed in Section 6.4.3 (pg.

164), this framework integrated a number of existing technologies into a single architecture connected

by a workflow. This integration vastly simplified the accessibility of model-driven technologies to

other developers, and this architecture is now being integrated into the Eclipse ecosystem. Integrating

model completion and model verification into this model-driven architecture could therefore be a very

beneficial area of future research and development.

9.2.6 Code Generation Templates for Additional Platforms

While one of the design goals of IAML was to develop a platform-independent modelling language,

the code generation templates of the Templates component in Section 7.6.2 (pg. 203) only support

a single combination of target platforms; in particular, the combination of PHP, Javascript, HTML,

CSS and sqlite. To prove that the IAML metamodel is truly platform-independent, it is desirable to

reimplement these templates to support additional browser platforms without having to modify any

other aspect of the proof-of-concept implementation. For example, as the J2ME standard is designed

to be device-independent [286], an implementation of the code generation templates of IAML into a

J2ME format would verify that the design of the IAML metamodel is also device-independent.

9.2.7 Incremental Transformations

One of the issues identified during the implementation of the Ticket 2.0 benchmarking application

in Section 8.3.2 is that the entire process is relatively slow and consumes a large number of system

resources. This is because both model completion and code generation currently operate as batch

processes, meaning that even small changes still require the complete re-evaluation of each model

transformation. This slow feedback cycle discourages incremental design processes or those that

follow test-driven development [19].

Incremental generation is a code compilation technique that allows source code to be incremen-

tally transformed into executable code as necessary [?, pg. 1144–1149], and is an important feature

of the Eclipse development environment to reduce development time [104, pg. 146]. Giese and Wag-

ner [109] investigated the development of applying incremental generation to model transformations,

proposing bidirectional transformations to support the synchronisation of two models, and found that

the corresponding speedup may allow the development of larger model instances.

At the very least, incremental model transformations could be applied to both the model comple-

tion and code generation aspects of the IAML proof-of-concept implementation, and would ideally

be implemented through the Eclipse plugin framework to support an automated build process within

Eclipse itself. For example, Drools supports the assertion and retraction of facts on a running model

instance [248], techniques which may support incremental model completion. Similarly, the Eclipse

release of Xpand 1.0 has recently announced support for incremental code generation which benefits

the transformation of large model instances [144].

9.2.8 Extensibility of the Proof-of-Concept Implementation of IAML

Many of the implementation technologies evaluated in Chapter 6 included an evaluation of the exten-

sibility of each technology, in order to support third-party extensibility of model-driven environments.
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For example, both EMF, GMF, Drools and openArchitectureWare all support varying levels of ex-

tensibility; and the proof-of-concept implementation of IAML has been implemented through OSGi

bundles that use existing Eclipse extension points.

As discussed earlier in Section 3.1.3, integration with other models and environments is an im-

portant benefit of model-driven environments. Consequently, an important future research question is

on identifying the aspects of which these technologies may be extended, and how the extensibility of

these technologies may be impacted by their integration into a single editor. It would also be interest-

ing to investigate how the extensibility of these selected technologies compare to another extensible

metamodelling environment such as Marama [122].

9.2.9 User Evaluations on the Proof-of-Concept Implementation of IAML

In this thesis, the interactions between the modelling environment and the model developers them-

selves have not been evaluated as this investigation fell outside the scope of this research. Many of

the novel techniques integrated into the proof-of-concept implementation of IAML, such as the model

completion and model instance verification components, would benefit from some form of end-user

evaluation.

For example, the benefits and difficulties of the model completion concept need to be evaluated

in terms of their usability and understandability, along with identifying the correct level of end-user

documentation necessary. Similarly, the benefits and difficulties of using the many different types of

model verification approaches needs to be investigated – is it acceptable to simultaneously provide

three different approaches? What is the best way to highlight constraint violations identified using

model checking? These technology-specific user evaluations could then be composed into an overall

understanding of the usability of a modelling environment for developing Rich Internet Applications.

9.2.10 Identifying Metamodel Refactoring Patterns

A number of common activities and patterns emerged as part of the incremental design and develop-

ment of IAML. For example, something as simple as renaming a class name involved the translation

of a variety of source code, model completion rules, code generation rules, test cases, test models,

documentation and design documents. Over time a number of patterns emerged, where different types

of metamodel changes would involve different amounts of subsequent refactoring effort.

Similarly to the concept of “refactoring” within the software domain [88], similar types of changes

applied to a metamodel may be termed metamodel refactoring, and the resulting changes necessary

for the implementation of that given metamodel termed coincidental refactoring. Some of these meta-

model refactorings identified through this research are discussed below, grouped into four categories

of increasing subjective difficulty.

• Easy: Adding a new attribute, reference, interface or class; creating a new package.

Generally, adding something to the metamodel does not require a lot of coincidental refactoring.

This is due to the nature of object-oriented software; for an extension, only the extension needs

to be considered, and all the underlying code should remain the same.

Within IAML, none of these refactorings required any direct changes to other components. In

particular, the SimpleGMF framework provides all new classes with a default representation

within each graphical editor.
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• Moderate: Renaming an attribute, reference, interface or class; changing a metamodel names-

pace; moving a class to another package; removing an empty package.

When renaming something in the metamodel, the coincidental changes are fairly straightfor-

ward. Generally, existing references simply need to be refactored; there is no change in the

internal logic. Automated refactoring tools can often assist in the renaming process – although

EMF does not yet directly integrate with the Eclipse refactoring tools.

Within IAML, these refactorings would often require the graphical editors references to be re-

named, and regenerated; code generation templates and model completion rules to be updated;

the model migrator updated; and existing model instances migrated. Renaming interfaces was

generally the easiest, as since you cannot have an instance of an interface, existing model in-

stances did not need to be migrated.

• Difficult: Merging two attributes or references; removing an interface or class; splitting an

interface into two interfaces.

These metamodel refactorings require a much more in-depth refactoring, as the developer will

have to manually modify the dependent components.

Within IAML, these changes required extensive development effort on the graphical editors, as

graphical elements needed to be removed or merged. Model completion rules would have to be

merged, and code generation templates would either be merged or require additional logic. The

model migrator would have to be updated and all existing model instances migrated.

• Very difficult: Splitting a reference into two references; removing an attribute or reference;

splitting a class into two classes.

Within IAML, these changes would require changes on all of the implementation components.

Because these metamodel changes are changing the semantics of a metamodel element, these

refactorings may not trigger compile-time errors. The test suite discussed in Section 7.9 (pg.

211) was extremely beneficial in identifying necessary functional changes that would other-

wise have gone unnoticed, and also to identify elements of the ModelDoc documentation that

required clarification.

Similarly to software development, modelling languages developed incrementally benefit from the

existence of automated refactoring tools or scripts to assist in common changes. For example, some-

thing as simple as renaming a model element can result in thousands of necessary changes, including

Java source code, model completion rules, documentation and design documents, and test models;

with the right development environment architecture, many of these changes could be performed au-

tomatically or with little developer input. Further research into this area could include the development

of new metamodel refactoring tools, or in new documentation or development methods to increase the

robustness of model-driven environments.

9.3 Summary

Model-driven development can be utilised to simplify the development of complex software appli-

cations across many platforms, but this research found that no existing web application modelling

language could be used to satisfactorily model or develop Rich Internet Applications. The Inter-

net Application Modelling Language (IAML) has been designed and proposed in this thesis as a
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platform-independent RIA modelling language. This language reuses existing modelling languages

where appropriate, and also defines a visual syntax to support the graphical definition of IAML model

instances.

The design of this language included the development of a proof-of-concept implementation in the

Eclipse framework, to verify that the design concepts of the language benefit the implementation of

real-world RIAs. This implementation included the integration of a number of different model-driven

technologies – such as a visual modelling interface, code generation templates, model completion

rules, and different types of constraints for model verification – in order to improve the usability of

developing robust IAML model instances.

The IAML metamodel supports many features not found in other web application modelling lan-

guages, such as ECA rules, the expression of reusable patterns through Wires, and a metamodel core

based on first-order logic. Through the implementation of the RIA benchmarking application Ticket

2.0, these concepts have been shown to simplify the development of real-world RIAs when compared

to a conventional implementation through the Symfony framework. This research has also raised

a number of interesting research questions that, when answered, may simplify the development of

model-driven environments in the future.





Appendix A

Use Cases

TODO All of these lists should end with periods, including comments sections (e.g. Use Case 1).

A.1 Background

As part of the research in defining modelling languages for RIAs, an important step was to identify

the requirements presented by these types of web applications. This involved a study of existing

RIAs to identify their common concepts, and the functionality within each application, enabled by

new technologies such as AJAX [108]. These functionalities were summarised into a selection of use

cases, which are presented below in a standard use case format.

This is similar to previous work in evaluating the expressiveness of existing modelling languages,

in terms of hypermedia concepts [245], basic web application concepts [92], and comparing the imple-

mentation of a conference system [267]. This white paper differs in that we systematically define the

use cases of Rich Internet Applications, which was then used to evaluate existing modelling languages

[323].

More information on this modelling language for RIAs, including technical details of a bench-

marking application satisfying these use cases, is available online at http://openiaml.org.

A.2 Actors

Without going into too much detail, the actors involved in these use cases are described below. A

simple UML use case diagram showing the relationships between actors is provided in Figure A.1.

• Visitor: an anonymous visitor to the application.

• User: a logged in/authorised Visitor.

• Developer: the developer of the site. Does not have to be a User.

• Administrator: a site administrator, who is also a Developer.

• Client: also known as a Browser; the user interface running on the Visitor’s machine, such as

Firefox or Internet Explorer.

• Server: the application host, such as Apache httpd.

http://openiaml.org
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Figure A.1: Use Case Actors

• Remote Server: another application host, separate from the Server.

• Software: separate application software running on the same machine as the Client, but not

commonly used to browse the Internet.

• Device: a separate piece of hardware, such as a mobile phone.

A.3 Use Cases

We derived our use cases from a study of existing web applications (as mentioned in our benchmarking

paper [322]); in particular, attention was focused on the following sites:

1. Gmail: Web-based e-mail by Google.

http://www.gmail.com

2. Calendar: Google Calendar, a collaborative online calendar.

http://calendar.google.com

3. Reader: Google Reader, an offline-enabled feed reader.

http://reader.google.com

4. Docs: Google Docs, a collaborative office suite.

http://docs.google.com

5. Last.fm: A social network-enabled music site.

http://www.last.fm

6. Pages: Google Page Creator, an online web publishing suite.

http://pages.google.com

http://www.gmail.com
http://calendar.google.com
http://reader.google.com
http://docs.google.com
http://www.last.fm
http://pages.google.com
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7. Facebook: A social networking platform.

http://www.facebook.com

These use cases are presented in a standard use case format. It appears that they can be loosely

grouped into subject areas (e.g. database-driven, events, user interface, security et al.), and in our

benchmarking paper where we fully define the requirements of RIAs, we do exactly this.

http://www.facebook.com
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UC-01 View Data

Description A website visitor can view a list of products on a website. This information is stored

in a relational database.

Preconditions A database exists; a list of products exists in the database

Actors Visitor, Server

Normal Sequence 1. The Visitor requests a list of products in the database

2. The Server connects to the database and lists all available products on one page

Postconditions

Exceptions 1. There are no products in the database; either an error is thrown or an empty list is

displayed

2. The database cannot be accessed; an error message is displayed

Comments Well supported in existing systems; a basic requirement of database-driven websites

UC-02 Update Data

Description A user can update their user account details on a website. Their account details are

persistently stored in a relational database.

Preconditions A User has a user account on the website/database and is logged in (see User Autho-

risation)

Actors User, Server

Normal Sequence 1. The User requests the Edit User Account page

2. The Server presents the Edit User Account page, which contains “name” and

“password” fields

3. The User changes the name displayed in the “name” field

4. The User submits the page back to the server

5. The Server changes the “name” of the current User to the value provided by the

User

6. The User is redirected to the home page

Postconditions

Exceptions 1. The User does not have the permissions to edit their user account (e.g. the account

is blocked); an error message is displayed

2. The database cannot be accessed; an error message is displayed

Comments See View Data
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UC-03 Pagination

Description A website visitor can view a list of products on the website. If there are more than 10

products, they are displayed in a pages, with first, previous, next, last buttons.

Preconditions Preconditions in View Data

Actors Visitor, Server

Normal Sequence 1. The Visitor requests a list of products in the database

2. The Server connects to the database

3. There is more than 10 items; the Server displays the first 10 items, along with

buttons to navigate forwards and backwards

4. The Visitor selects the navigation button to go forwards or backwards:

(a) The Server changes the range of products currently displayed

(b) The Server displays the new list to the Visitor, with the navigation buttons

updated to show the new position

Postconditions

Exceptions 1. Exceptions in View Data

2. The Visitor tries to navigate outside of the valid range; the result is restricted to

the nearest bound page (i.e. first page or last page)

3. The list of products change whilst the user is browsing the pages; the Server ig-

nores the change

Comments 1. Web applications may refresh the list and navigation buttons using AJAX technol-

ogy [108]

2. If the list of products may change, the Server may wish to inform the user, store

the initial results in memory, or display the updated list anyway

UC-04 User Action Auditing

Description For auditing purposes, any edit or delete a user makes to a persistent data store or

object will be logged to a logging table.

Preconditions 1. A persistent data store or object is marked as auditable

2. There is a logging data store to populate with auditing information

3. The User is authenticated

Actors User, Server

Normal Sequence 1. The User performs an action

2. The Server requests to edit or delete a value in the data store or object

3. The Server makes a copy of the change in the database in the logging data store,

along with the current User details and the time

4. The original data store or object is edited or deleted, and execution resumes

Postconditions

Exceptions

Comments 1. The “copy of the change” may be an entire copy, or only the delta change (diff )

2. Auditing the actions of anonymous users (Visitors) could also be supported

3. Systems tend to lack support for modelling cross cutting concerns like these; this

could be implemented through point-cut like features on the design level with

stereotypes/naming patterns, or an implementation solution like Java Servlet filters
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UC-05 Debug Mode

Description For debugging purposes, complex operations may have support for debug statements

interspersed in the code.

Preconditions 1. Debugging statements are dispersed throughout the application

2. Administrators can turn on/off debug mode

3. Administrators can change the current level of debug messages recorded

4. A debugging log exists

Actors Administrator, Server

Normal Sequence 1. The Administrator turns on the Debug mode

2. For every debugging/logging statement in the code executed by the Server,

(a) If the debug statement is covered by the current debug level,

(b) The statement is logged into the debug log by the Server along with the

current time

3. This continues until the Administrator turns off the Debug mode

Postconditions

Exceptions 1. The debugging table does not exist; it is created or an error message is sent to the

Administrator and debugging mode is temporarily turned off

2. the debugging table cannot be written to; an error message is displayed to the

Administrator and debugging mode is temporarily turned off

Comments 1. Debugging may slow down execution

(a) How to toggle debug mode without restarting the application?

2. See User Action Auditing for an alternative debugging method

UC-06 Server Transaction Support

Description A bank customer uses a web application to transfer money. The transaction should

only succeed if every aspect of the transfer succeeded; otherwise the transaction

should be rolled back.

Preconditions The system is in a consistent state; the web application represents a banking applica-

tion

Actors User, Server

Normal Sequence 1. The User submits a transfer request

2. The Server starts the transaction

3. The Server deducts the amount from the source account

4. The Server adds the amount to the destination account

5. The operation is logged to a logging table (optional)

6. The Server checks to make sure all operations succeeded

7. The Server commits the transaction

Postconditions The system is in a consistent state

Exceptions 1. Step 3, 4 or 5 fail; the transaction is rolled back

2. The operation does not reach to Step 7; the transaction is rolled back after a spec-

ified timeout time

Comments Many web applications are front-ends for transactional systems
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UC-07 Local Data Storage

Description A shopping cart is implemented on a User’s client, with the shopping cart data sub-

mitted to the Server only at checkout.

Preconditions The User is browsing a list of products (see View Data); the Client can store data

locally

Actors User, Client, Server

Normal Sequence 1. For each product the User wants to purchase,

(a) The User requests to add the product to their shopping cart

(b) The Client stores the product addition to a local copy of the shopping cart.

This data is stored throughout the entire session and not transmitted to the

Server.

(c) The User can continue to purchase more products

2. The User requests to checkout their shopping cart

3. The Client submits the stored shopping cart data to the Server

4. The Server takes the data stored from this shopping cart and charges it to their

account

Postconditions

Exceptions 1. The application loses network connectivity; the shopping cart will likely be lost.

See also Persistent Client Data

Comments 1. For client-side storage, technologies such as Javascript memory, cookies, Java ap-

plets, URL rewriting and browser filesystem storage could be used. This should

be transparent to all actors involved.

2. This could be modelled with stereotypes such as “server”, “client”, “cacheable”

etc

3. Important if client has unreliable connection (e.g. ad hoc/wireless network)

4. Important if high level of system availability is required (e.g., companies outsourc-

ing office applications to web based providers)

5. Technology wise, there are some development aiming at this feature, e.g. Dojo

Toolkit [70], Google Gears [114]

6. One potential implementation could be covered in Store Data in Local Database
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UC-08 Server Data Access

Description The User can download an e-mail data object (like an e-mail draft) from the server to

their client machine to work on

Preconditions There is an existing e-mail data object to work on, that exists in a database

Actors User, Server

Normal Sequence 1. The User opens an editable page for the e-mail

2. The Client downloads the e-mail object from the Server

3. The User edits the e-mail without recontacting the Server; this is achieved by

editing the object in Client memory

4. The User is finished editing the e-mail, so submits it back to the Server

5. The Client submits the changed object data to the Server

6. The Server reconstructs the object based on the Client data and saves it back to the

database

Postconditions The e-mail object is changed and saved back to the database

Exceptions 1. The browser or active Internet connection goes offline while the user is editing the

e-mail; the User should be informed.

Comments 1. This is different to a User working on data stored exclusively on their local ma-

chine, as in Persistent Client Data

2. Data accessed locally can be automatically saved through Client Timer Support

3. See also Local Data Storage

UC-09 Persistent Client Data

Description An e-mail can be worked on, over many sessions, with the data staying persistent on

the client’s device

Preconditions

Actors User, Client, Server

Normal Sequence 1. The User starts writing an e-mail on their Client

2. The User closes the editing session

3. The Client saves a copy of the e-mail to some storage device

4. After some time, the User re-opens the e-mail editing session

5. The Client opens the saved copy and resumes editing

6. The User finishes their changes and submits the final copy to the Server for deliv-

ery

7. The local copy of the e-mail is removed

Postconditions

Exceptions 1. After an extended period of time (e.g. a year) the data may be lost

2. Stored data may be deleted by the User themselves (e.g. clearing cookies)

Comments 1. Like in Store Data in Local Database, this should be transparent to the actors

involved

2. Could be implemented through technologies mentioned in Store Data in Local

Database

3. See Local Data Storage for client storage comments

4. E-mail delivery is covered in E-mailing Users
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UC-10 Temporary Server Data

Description A user is working on an image editing client; the image needs to be stored on the

server, but only temporarily during the editing session

Preconditions The User can upload an image to the Server

Actors User, Server

Normal Sequence 1. The User uploads an image to work on

2. The Server saves this image to a temporary storage device

3. The User performs editing operations on the image (e.g. rotate, flip, add text,

resize), which may take a long time and transit over many pages

4. The Server keeps the changes and original images in temporary storage

5. Once the User is finished, the final image is sent via e-mail

6. Once the session is over, or a new image is uploaded, the temporary data is deleted

or marked for deletion

Postconditions The image is not stored on the Server

Exceptions 1. The editing session is disconnected; the User may permanently lose the temporary

image, or the session could be automatically restored (Restore Server Session)

Comments 1. The temporary server data could be stored either in files, or in a database

2. The temporary data should be able to persist over server reboots, though this may

incur a performance penalty

3. E-mail delivery is covered in E-mailing Users
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UC-11 Uploading Files

Description To send a file via e-mail, the user can upload a file to the server, which is temporarily

stored before being sent

Preconditions The User can upload a file to the Server

Actors User, Server

Normal Sequence 1. The User is creating an e-mail to send

2. The User attaches a file to the e-mail, by uploading a file to the Server

3. The Server downloads the file from the User and saves it in a temporary location

4. The Server informs the User the file has been attached and is ready to send

5. The User submits the completed e-mail to the Server

6. The Server attaches the file(s) to the e-mail and sends the e-mail

Postconditions

Exceptions 1. The temporarily uploaded file is removed unexpectedly; the System displays an

error message to the User, and has to re-upload their file before they can continue

sending the e-mail

2. The uploaded file cannot be stored; the System displays an error message to the

User, and sends an error message to the Administrator

3. The uploaded file is of an invalid or unexpected type; the System displays an error

message to the User, and the temporary file is removed

4. The uploaded file is too big; the System displays an error message to the User, and

the temporary upload data is discarded

Comments 1. The file must be able to persist over server reboots in this situation; this addresses

fault tolerance and availability

2. It may be useful to add a progress dialog to the file upload; this could be accom-

plished by another service, Ajax + Javascript, etc

3. E-mail delivery is covered in E-mailing Users



A.3 Use Cases 253

UC-12 Restore Server Session

Description While working on an image on the server, the User’s session is disconnected; once the

User returns, it is possible to continue the previous session

Preconditions The User is authorised

Actors User, Server

Normal Sequence 1. The User is working on an image manipulation program (see Temporary Server

Data)

2. The session is disconnected prematurely, for example a power failure on the User’s

machine

3. The User returns to the website and re-authorises themselves

4.

5. The User requests to resume the existing session.

6. The User continues using the application with the old session data

Postconditions The User is still authorised, and is using the same session data

Exceptions 1. The User requests to save the session data; the old session data is saved into per-

manent storage for access later, and a new session is started

2. The User requests the session data is destroyed; the old session is removed and a

new session is started

3. The old session is destroyed before the session can be resumed; the session data

will be lost

4. The old session is corrupted or loading the session would result in an inconsistent

system state; the User is informed that they cannot reload it and must start a new

one

Comments 1. Step 4 could be enhanced with a “preview existing sessions” step, allowing the

User to specify which sessions to load or remove

2. This is similar to Microsoft Word’s recovery process

3. There would probably have to be a time limit to how long sessions could be re-

tained. Lost sessions could persist over server reboots, if required.

4. Some session data may not be suitable for recovery, for example, temporary au-

thorisation with a bank transfer

5. (This is different to Firefox’s Restore Session; Firefox does not actually restore

the sessions, only the pages that were in use. This use case is server-based.)

6. This would be a way to load and save data from sessions active on multiple ma-

chines
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UC-13 User Authorisation

Description A Visitor can log in with certain credentials to become an authorised User

Preconditions A Visitor has a session (see Session Support); there is a list of existing Users in the

application

Actors Visitor, User, Server

Normal Sequence 1. A Visitor visits a website, and goes to the “login” page

2. The Visitor enters in a username and password, and submits the form to the Server

3. The Server checks their username and password against the list of existing user

accounts, and verifies that the account exists

4. The Server updates the Visitor’s session to indicate that they are an authorised

User

5. The Visitor becomes a User, and is redirected to a User-only page

Postconditions

Exceptions 1. the entered credentials are invalid; the Visitor is informed and is prevented from

continuing

2. The User account found is blocked from authorising; an error message is displayed

to the Visitor

3. The Visitor loses its session while authorising; a new Session is created, or an error

message is displayed to the Visitor, informing them they cannot currently login.

Comments 1. This is a basic requirement of database-driven websites

2. If the user cannot login, the Visitor can either register a new account, or retrieve

their lost information (e.g. Password Reset)

3. This is usually not directly modelled in web applications but provided as service

4. However, the access rights controlling other resources must be defined

5. The registration of new User accounts is covered in Account Registration

6. User authentication can also occur through Basic or Digest HTTP authentication
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UC-14 Password Reset

Description A user cannot login with their given credentials; they know their username, but not

their password. They choose to reset their password.

Preconditions The user account has an associated e-mail address

Actors Visitor, Server

Normal Sequence 1. The Visitor asks the Server to reset their password for a given username

2. The Server resets the User’s password to a random password.

3. The Server e-mails this random password to the User’s e-mail account.

4. The Visitor receives this e-mail, and uses this new password to login as a User,

using User Authorisation.

5. The User is asked to change their password before they can continue with their

session.

Postconditions

Exceptions 1. The password e-mail cannot be sent; an error message is displayed to the User,

and the Administrator is notified of the problem.

2. The User does not change their password in Step 5; this step will repeat before

User Authorisation can complete.

Comments 1. The “random password” may be implemented through a secret link which does

not affect the user account’s password at all.

2. In Step 2, the Server can request for additional account information, e.g. asking a

secret question stored with the account.

UC-15 Session Support

Description Visitors to the website are tracked over the stateless HTTP protocol with an imple-

mentation of sessions.

Preconditions

Actors Visitor, User, Server

Normal Sequence 1. The Visitor visits the web application for the first time.

2. The Server creates a new session for the Visitor, and links this session to the current

Visitor

3. After a period of inactivity, the session is lost.

Postconditions

Exceptions 1. The Visitor cannot be tracked using existing session technologies; an error mes-

sage is displayed to the Visitor and cannot continue using the web application.

2. The Visitor is authenticated as a User when the session is lost (Step 3); the Visitor

will have to re-authenticate as a User (User Authorisation).

Comments Sessions can be implemented through many technologies, such as cookies, IP track-

ing, or URL rewriting. The choice of technology should be transparent to the actors.



256 A Use Cases

UC-16 Account Registration

Description To use a shopping account properly, a Visitor needs to register their account details

with the website to create a User account.

Preconditions 1. Visitors can create new User accounts

2. User accounts can be stored in a data store

3. The current Visitor is not authenticated as a User (User Authorisation)

Actors Visitor, User, Server

Normal Sequence 1. The Visitor requests to create a new User account

2. The Server responds with an application form, which includes fields for e-mail

address, username, and password.

3. The Visitor enters in their details and submits it to the Server.

4. The Server creates the new User account, and marks it to disabled. The User is

e-mailed instructions on how to activate their account.

5. The Visitor receives the e-mail instructions, and follows the instructions to activate

their account.

6. The Server marks the account as enabled, and redirects the Visitor to the login

page (User Authorisation).

Postconditions A new User account has been created

Exceptions 1. Invalid email address is submitted; the Visitor is informed of the error and must

correct the application form.

2. Email cannot be delivered; the Visitor is either notified immediately, or the regis-

tration is ignored.

3. The given username (or email address) already exists; the Visitor is informed of

the problem, and is given the option to choose a different username, or attempt to

login with the username (in case they had forgotten they already had an account).

4. The user does not follow through on the account activation; the account is auto-

matically deleted after a period of inactivity.

5. Erroneous account details are submitted, e.g. the wrong e-mail address; the deliv-

ered e-mail includes instructions on how to unsubscribe or cancel the account.

Comments 1. It is standard practice to encrypt the user password with a one-way hash with a

hidden salt.

2. It is becoming acceptable for e-mail addresses to fulfill the role of usernames.

3. It is becoming less acceptable to force registration on users for trivial actions like

downloading and submitting orders.

4. For some websites, forced account activation (steps 4-6) may not be necessary;

this is generally only used to reduce spam or fake accounts.
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UC-17 Automatic User Authorisation

Description Instead of having to enter in their user details on every website visit, they are auto-

matically logged in.

Preconditions Preconditions in User Authorisation

Actors User, Client, Server

Normal Sequence 1. As the User is authenticating (User Authorisation), they select an option to auto-

matically log in (“remember me”)

2. The Server stores re-authentication data on the Client

3. The User leaves the website; the session is closed, but the stored data remains

4. The User returns to any page on the website

5. The Server automatically detects that the User has re-authorisation data; this in-

formation is verified on the Server, and if successful, the user is automatically

re-authorised

Postconditions Postconditions in User Authorisation

Exceptions 1. The re-authorisation data is incorrect; the user is not logged in, the re-authorisation

data is removed, and an error message is displayed to the Visitor.

2. The re-authorisation data cannot be stored on the Client; an error message is dis-

played to the Visitor.

Comments 1. Re-authorisation data is usually stored in cookies.

2. When the user is automatically logged in, a message is displayed once to the User,

informing they have automatically been logged in.

3. A more modern method of storing this data is not to store the username and pass-

word on the server; but instead, store a “login key” on both the server and the

client, which is used to verify the login. This also has the added benefit of sur-

viving password changes, but has the problem of reduced security of access from

compromised machines, unless existing login keys can be revoked.

4. Generally sites using automatic authorisation also re-request for the user’s pass-

word before embarking on critical operations, such as changing user account de-

tails or deleting their account.

5. Some sites, such as banking sites, should never have automatic authorisation en-

abled.
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UC-18 Static Views (HTML)

Description A calendar web application wishes to publish an HTML-only version of a calendar

Preconditions The calendar page can be represented purely in HTML

Actors Visitor, Server

Normal Sequence 1. A Visitor requests the HTML-only version of a calendar page

2. The Server constructs the page by removing all scripting from the page

3. The Visitor receives the HTML-only page

4. For a User to add events to the calendar,

(a) The User clicks the Add Event button, which loads the event entry page

(b) The User fills in the form, with no help from Javascript or dynamic tech-

nologies

(c) The User submits the form, and the Server saves the new event

Postconditions

Exceptions

Comments 1. Useful for users which do not have Javascript enabled, or old/slow/incompatible

browsers

2. It may be probably possible to convert any rich features to HTML?

3. If necessary, the Server could emulate a user session on the server itself. An em-

ulated session could assist in development of features that are not globally sup-

ported, e.g. ActiveX features emulated for Firefox users

4. May be related to Multiple Browser Support

5. See also Backwards-Compatible Scripting
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UC-19 Asynchronous Form Validation

Description Form validation can occur via asynchronous communication with the server; see

Client Form Validation for a Client-only version

Preconditions Preconditions in Client Form Validation

Actors Visitor, Client, Server

Normal Sequence 1. The Visitor is filling out an entry field in a form (e.g. an e-mail address in a

registration form)

2. Once the field is filled out, the Client submits the value to the Server for validation

3. If the Server finds the input is invalid (e.g. the address is malformed), it returns

the result to the Client

4. The Client graphically highlights the field, and displays a message next to it in-

forming the Visitor the input is invalid, why it is invalid, and how to fix it (“this

e-mail address already exists in our database; would you like to login instead?”)

5. The Visitor corrects the error (e.g. a valid email address)

6. The input is submitted again to the Server, and it is now correct; the field highlight

and error message is removed

Postconditions Postconditions in Client Form Validation

Exceptions 1. The corrected value (Step 6) is incorrect; the process goes back to Step 3

2. The Client cannot contact the Server for validation; a message may be displayed

to the Visitor, but validation should also occur on the Server after submission

Comments 1. See Client Form Validation comments

2. Care must be taken to ensure that the connection is not saturated with validation

requests (e.g. validating on every key stroke)

3. In some cases (e.g. unique usernames), the server result could be cached locally,

so multiple inputs of the same data does not re-poll the server

4. Sometimes, this depends on the capability of the client, and it is desirable to decide

where to validate a form at request time

5. Even though validation may occur on the client, it still must occur on the server

before any data is retained
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UC-20 Client Form Validation

Description Fields can be validated on the Client via Javascript

Preconditions There is a field that needs to have a valid value

Actors Visitor, Client

Normal Sequence 1. The Visitor is filling out a destination e-mail address form (sending an e-mail)

2. Once the field is filled out, the e-mail address is parsed on the Client for validity

(perhaps through regular expressions)

3. If the address is invalid:

(a) The field is highlighted and an error message is displayed, and possibly a

way to fix the problem (“this e-mail address is invalid; there is no @ charac-

ter.”)

(b) The Visitor goes back to the invalid field and corrects the problem

(c) The Client re-checks the field for validity, and it is valid

(d) The highlight around the field is removed, and the error message is removed

Postconditions The field has a valid value

Exceptions 1. The Client does not have Javascript enabled, or validation cannot occur; an error

message is displayed to the User, and validation must occur on the Server (Server

Form Validation)

Comments 1. See Server Form Validation comments

2. All Client-side operations and validation must be treated as insecure, and all vali-

dation must be re-executed on the Server

3. In some cases, it may be appropriate to disable sending the form until all attributes

in the form are valid

4. The client and server form validations could be integrated together into one set of

rules

5. The key difference between this use case and Client Form Validation is that this

use case only occurs once the entire form is completed
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UC-21 Server Form Validation

Description When a form is submitted to the Server, the Server can assess the form for validity; if

it is invalid, the form is redisplayed to the Visitor with the errors highlighted

Preconditions There is a field in a form that needs to have a valid value

Actors Visitor, Server

Normal Sequence 1. The Visitor is presented with a user registration form

2. The Visitor fills out the form with incorrect data and submits it to the server

3. The Server validates all the inputs of the form, and recognises that some of the

inputs are invalid (e.g. malformed e-mail address, illegal username)

4. The Server redirects the Visitor back to the form entry page, but highlights all the

incorrect fields, and displays a list of problems with the submission

5. The Visitor corrects all the values on the form, and resubmits the form to the Server

6. The Server re-validates all the inputs of the form, and recognises that they are all

valid. The registration is saved to the database.

Postconditions The field has a valid value

Exceptions 1. The Server cannot carry out the validation; an error message is displayed to the

User and Administrator, and execution is not allowed to continue

Comments Instead of simply saying “this input is invalid”, the Server could respond with a list of

possibilities (“did you mean X?”)
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UC-22 Multiple Browser Support

Description The application can be rendered identically to multiple browsers, or take advantage of

browser-specific features

Preconditions

Actors Client, Server

Normal Sequence 1. The Client requests a page

2. The Server identifies the browser from the user request, in this case Internet Ex-

plorer 6:

(a) The Server constructs a page response that is standard to all target browsers

(b) The Server applies fixes to solve the differences in rendering techniques, for

example Internet Explorer 6’s incorrect CSS float model

(c) The Server sends this result to the Client

Postconditions

Exceptions 1. No user agent can be identified; it sends the standard page response (Step 2a)

2. The user agent is incorrectly identified by the Server; there should be a way for

the Visitor to change the target browser, but it should be as transparent as possible

Comments 1. The current user agent can be identified using the standard HTTP headers, or inline

Javascript/CSS code.

2. This could be cleanly implemented with a conditional processing instructions

[172]

3. This could also lend itself to multiple output formats:

(a) XML + XSL (client-side)

(b) XHTML (1.0, 2.0)

(c) HTML (3.0, 4.01, 5.0)

(d) etc.

4. This technique can be useful to handle different mobile phone clients (Mobile

Phone Support)
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UC-23 Mobile Phone Support

Description Website visitors using a mobile phone can automatically be redirected to a design

specifically created for mobile users

Preconditions The Visitor is visiting a normal web application with a mobile phone; a web applica-

tion designed for mobile phones exist

Actors Visitor, Server

Normal Sequence 1. The Visitor requests a page on the website

2. The Server realises the user is on a mobile phone

3. The Server redirects them to the mobile phone version of the same web application

Postconditions The Visitor is browsing the web application designed for mobile phones

Exceptions

Comments 1. Identification of mobile phones can be achieved in the same way as Multiple

Browser Support

2. Mobile pages tend to be smaller with less content than PC equivalents

3. Mobile pages also tend to have less graphics and limited Javascript support

4. The Visitor should be able to disable this automatic redirection if desired

5. The use case Multiple Browser Support can help rendering the same mobile site to

multiple implementations of mobile platforms

UC-24 Remote Data Source

Description A calendar application has been asked to import another calendar (in iCal format)

from an external web server.

Preconditions The application can import iCal calendar sources; calendar events can be stored in a

local database

Actors User, Server, Remote Server

Normal Sequence 1. The User has requested to import an external iCal file

2. The Server contacts the Remote Server and requests the iCal file

3. The Server downloads and parses the iCal file

4. For each event identified,

(a) It checks to see if the event already exists in the database

(b) It adds the event to the database

Postconditions The remote calendar has been loaded into the local database

Exceptions 1. The Server cannot access the Remote Server; an error message is displayed to the

User

2. The iCal file cannot be parsed; an error message is displayed to the User

3. A single iCal event cannot be parsed; the event is ignored, and a message is dis-

played to the User

4. An event already exists in the database; it can either be ignored, or updated with

the new event data

Comments 1. This does not cover removing events that no longer exist in a remote source

2. This process occurs only once; for accessing a remote data source regularly, see

Active Remote Data Source
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UC-25 Active Remote Data Source

Description A calendar application has been asked to continuously import iCal events from an

external web server, actively keeping the local calendar updated at all times

Preconditions 1. Preconditions in Remote Data Source

2. The Server has a registered remote data source for a given calendar

3. The Server has calendar data which has not been updated for more than 24 hours

Actors Server, Remote Server

Normal Sequence 1. The Server locates the remote data source

2. The Server uses Remote Data Source to update the data

3. The Server marks the current time as the last calendar update

Postconditions Postconditions in Remote Data Source

Exceptions 1. Exceptions in Remote Data Source

Comments 1. See Remote Data Source

2. In some cases it can be useful to force a data refresh outside of the regular interval

3. For data which rarely changes, the Server could automatically reduce its access

interval

4. Multiple requests to the same data source could be cached locally

5. This process could be aggregated into one automated process/server

UC-26 Data Feeds

Description The application can provide external data feeds about new blog entries to external

clients/servers via RSS.

Preconditions Blog entries can be fed through an RSS feed [258]

Actors Server, External Server

Normal Sequence 1. An External Server requests an RSS feed of the most recent blog entries

2. The Server compiles an RSS feed of the most recent blog entries and returns it to

the External Server

Postconditions

Exceptions 1. The RSS feed is requested too many times by one client; the client is automatically

denied access for a few hours, and the administrator is notified, to prevent denial

of service attacks

Comments 1. This could be generalised into a specific type of Web Service request

2. Some data feeds could use emulated user permissions, see below

3. Modelling may support RSS as general mechanism, i.e. to have modelling el-

ements that can extract RSS summaries from resources, and to provide an ab-

straction from concrete RSS dialects (RRS1.0, RSS2.0, ATOM). This needs to be

customisable, w.r.t. display, security, etc.
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UC-27 Web Service

Description The application can provide external functionality support to its services via web ser-

vice communication protocols such as SOAP [300], such as converting currency.

Preconditions A web service API is published for the local web application; the web application has

exchange rates between US$ and Yen.

Actors Server, External Server

Normal Sequence 1. An External Server requests a web service function call via SOAP, to convert US

$50 to Yen.

2. The Server retrieves its exchange rate for US$ and Yen, and converts this into a

number

3. The Server responds to the External Server with the result using the SOAP frame-

work

Postconditions

Exceptions 1. The External Server does not have the permissions to call this web service; the

request is denied

Comments 1. If this web service also calls a web service itself, we must make sure to prevent

infinite loops of web service calls

2. Alternative web service communication protocols includes JSON [56] and the out-

dated XML-RPC protocol



266 A Use Cases

UC-28 Back/Forwards Button Control

Description The application can control where the back and forward buttons go, even on applica-

tions which do not change the browser history by default

Preconditions The User is using an e-mail application which is entirely rendered on the client

Actors User, Client

Normal Sequence 1. The User is in the e-mail inbox page

2. The User clicks on an e-mail, which replaces the view with the e-mail contents

3. The Client adds the e-mail inbox page to the browser history

4. The User clicks on the reply link, which adds a reply box to the bottom of the

e-mail, and redirects focus to the bottom of the email

5. The Client adds the e-mail page to the browser history

6. The User enters in a reply

7. The User clicks the inbox link

8. The User redirected to the e-mail inbox page

Postconditions

Exceptions 1. Step 4, the user clicks Back; the User is taken to the e-mail inbox page, and the

e-mail page is the next page

2. Step 6, the user clicks Back; the User is taken to the e-mail page, and the reply

box is shown in the next page

3. Step 8, the user clicks Back; the User is taken to the e-mail page, with the last

reply still in the content field. The e-mail inbox is shown in the next page, but the

user is asked if they want to lose their changes if they go forwards.

Comments 1. If the User ended up sending the e-mail (after Step 6), going back to the reply box

would have presented an empty reply

2. An application should always have back button support; disabling this button

causes great user stress

3. Sometimes going back may require either the old view to be displayed (writing a

reply), or the view refreshed (e-mail inbox), depending on the situation

UC-29 Opening New Windows

Description The User can open links in new windows, even if the application is solely rendered

via the Client

Preconditions

Actors User, Client

Normal Sequence 1. The User is in the e-mail inbox page

2. The User clicks on an e-mail, but asks for it to be opened in a new tab/window

3. The e-mail is displayed in the new tab/window by the Client, with no previous

browser history

Postconditions

Exceptions 1. The browser cannot open a page in a new window or tab; the page is opened in

the current window instead, and the browser history is affected accordingly (see

Back/Forwards Button Control)

Comments 1. Some links should not be allowed to open in new windows (e.g. actions), but these

should not be rendered as text links, but as buttons

2. Also refer to Pop-up Window Support
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UC-30 Client-Side Application

Description The entire application user interface can be rendered by Javascript and XML by the

Client, instead of HTML from the Server

Preconditions

Actors User, Client, Server

Normal Sequence 1. The User requests the e-mail website

2. The Client downloads the Javascript to render the page

3. The Client executes the Javascript, which downloads an XML file of inbox e-mails

4. The Client draws the user interface, using the information from the XML

5. The User can interact with this user interface like any normal website, except most

operations are run on the Client, not on the Server

Postconditions

Exceptions 1. The Javascript cannot be executed, or the user interface cannot be rendered in this

browser; the User is redirected to a non-Javascript page

2. The XML cannot be loaded; the User is redirected to a non-Javascript page

3. The loading process takes too long; the User is redirected to a non-Javascript page

Comments 1. This is not an example of a browser displaying XML+XSL; it is the use of

Javascript and XML data islands to construct an HTML DOM in memory at run

time on the client

2. Requires Back/Forwards Button Control

3. This naturally tends towards storing some data on the Client side, and operating

on it there; see Local Data Storage
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UC-31 Communication with Software

Description A web application can send messages to external software applications

Preconditions An e-mail site has a chat service; an external software application is also connected to

this chat service

Actors User, Server, Software

Normal Sequence 1. A User is logged into a chat program, with the desktop Software

2. On the Server, the User receives a new e-mail message

3. The Server sends a notification to the desktop Software about the new e-mail,

which renders as a pop-up box

4. The User clicks on the notification

5. The User is sent to a special URL using their Client, which opens in a new browser

window

6. The Server displays the e-mail

Postconditions The User is viewing the received e-mail

Exceptions 1. The Software cannot open a new browser window; an error message is displayed

to the User

2. The authentication between the User and the Software expires before the Server

can re-authenticate the User; the process is stopped at Step 6, and the User is asked

to re-authenticate themselves

Comments 1. Usually when the notification is clicked, the User is sent to a special URL, which

is constructed to automatically authenticate the user (User Authorisation) if they

are not already authenticated

2. Very common in chat programs integrated with e-mail clients, e.g. Google Talk

and Gmail, or MSN Messenger and Hotmail

3. The notification (Step 3) could either be passive (polling) or active (an open con-

nection is sent notifications)

4. Passive polling can be achieved using a Web Service by the Software
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UC-32 Mobile Phone Communication

Description A user can get notifications via mobile phone (SMS)

Preconditions 1. The web application receives e-mails

2. The User has a registered mobile phone number, and the number is contactable

from the Server

Actors User, Server, Device (mobile phone)

Normal Sequence 1. On the Server, the User receives a new e-mail

2. The Server sends a notification message to the User via a mobile network

3. The mobile network transports the notification to the User’s mobile phone

4. The Device (mobile phone) receives the notification and displays the message to

the User

Postconditions

Exceptions 1. The mobile network is down, or cannot be contacted; the User does not receive the

notification until the network is back up, or the notification is lost

2. The mobile number no longer exists, or does not support messaging; the Server

removes the association with the User and informs the User the next time they log

in

3. The mobile phone is offline; the User will receive the message when they next turn

on their phone

Comments 1. On some networks, it may cost to send messages; the application may need to

maintain some sort of user account balance

2. The notification message sent could include a URL, similar to Communication

with Software, which the User can open and browse with their mobile phone
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UC-33 E-mailing Users

Description The User can be sent e-mails

Preconditions The web application supports internal messages; the User has requested to be e-mailed

about new messages sent internally

Actors User, Server

Normal Sequence 1. In the web application, the User is sent a new internal message

2. The Server composes an e-mail to be sent to the User, including the internal mes-

sage

3. The Server sends the e-mail

4. The User receives the e-mail

5. The User reads the internal message included

Postconditions

Exceptions 1. The e-mail bounces immediately (invalid address); the notification service is dis-

abled, and the User is notified the next time they log in

2. The e-mail bounces after a while (cannot contact server); the message is discarded

or added to a queue to retry later

3. The User never receives or downloads the e-mail; nothing happens

Comments 1. This is a basic requirement of database-driven websites

2. One important aspect of sending e-mail messages is managing bouncebacks, and

the lifecycle of e-mail accounts; this needs to be considered in any serious web

application

3. Also related to Mobile Phone Communication, emails are another example of an

event delivery mechanism
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UC-34 E-mail Unsubscription

Description Any Visitor can unsubscribe their e-mail address from the web application, to prevent

any further e-mails

Preconditions The web application can send e-mails (E-mailing Users)

Actors Visitor, Server

Normal Sequence 1. The Visitor requests to be unsubscribed from all future e-mails to a particular

address

2. The e-mail address is sent a confirmation e-mail, along with instructions on how

to reverse the process

3. The Visitor clicks the link in the confirmation e-mail to disable all future e-mails

4. The Server adds this e-mail address to a “do not contact” list

5. Any future time an e-mail is being sent out:

(a) The destination address is checked against the list of people to not contact

(b) If the address exists in the invalid list, an error message is displayed, and the

message is discarded

Postconditions The Visitor is never e-mailed again

Exceptions 1. The e-mail address has never been contacted before; the e-mail address is still

added to the “do not contact” list

2. There are some e-mails in the e-mail queue for the user; these e-mails are deleted

once confirmation has been given by the user, and if possible, error messages will

be displayed to the Administrator

Comments 1. The ability to permanently unsubscribe from web services is important to gain user

trust, and also satisfy privacy regulations

2. Any further e-mails to this user must be sent manually, and cannot be sent by the

system

3. The Visitor may, in the future, remove themselves from the “do not contact” list, by

following the instructions in the e-mail in Step 2, or contacting the administrators

4. Steps 2 and 3 might not be possible, depending on privacy requirements
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UC-35 Persistent Errors

Description If an error occurs during an operation (such as sending an e-mail to an invalid address)

when the source of the operation cannot be contacted, the error message is stored until

later

Preconditions The system can send e-mails (E-mailing Users); error messages can be stored by the

Server for particular Users

Actors User, Server

Normal Sequence 1. The User tries to send an e-mail to an address that doesn’t exist

2. The e-mail is put into a local queue on the Server while it is trying to be sent

3. The User leaves the web application

4. The e-mail bounces back to the Server as undeliverable; the Server stores an error

message for the User

5. The User returns to the web application

6. The error message is displayed from the Server along with the original message

Postconditions The error message is removed from the Server once displayed

Exceptions 1. The User never returns to the web application; nothing happens

Comments The error message could also be delivered via e-mail to the User

UC-36 User Content Security

Description Content can be shared between users, with specific permissions

Preconditions 1. There exist three Users: User 1, User 2, User 3

2. A User 1 has created and published a blog entry

3. User 2 and User 3 cannot usually access the blog entry

Actors User 1, User 2, User 3, Server

Normal Sequence 1. User 1 assigns reading rights to User 2

2. User 2 tries to view the blog entry

3. The Server checks the entry permissions and allows User 2 to view the entry

4. User 3 tries to view the blog entry

5. The Server checks the entry permissions, but displays an error message to User 3

and does not let the User continue

Postconditions 1. User 2 can view the entry

2. User 3 cannot view the entry

Exceptions 1. User 2 views the blog entry, but then the rights are revoked; User 2 can continue

to view the entry until the page is closed

Comments Assigned permissions should be accessible and modifiable by User 1
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UC-37 Private User Content Security

Description A User can share private feeds to another Visitor, which emulates the first User’s

account to achieve the desired rights

Preconditions Preconditions in User Content Security

Actors User, Visitor, Server

Normal Sequence 1. The User shares a private URL with the Visitor to view an RSS feed of all their

blog entries

2. The Visitor visits this private URL without being authenticated

3. The Server temporarily assigns the Visitor the rights of the User, to allow them to

view the request

4. The Server checks the entry permissions and allows the Visitor to view the entry

Postconditions Postconditions in User Content Security

Exceptions 1. Exceptions in User Content Security

2. The User revokes or regenerates the private URL; the original URL will no longer

provide access

Comments 1. Often this is achieved by adding a special authentication key to a request

2. If a third party discovers this private URL, they can gain unauthorised access to

this private data

3. Another common example is sharing a private calendar with a friend, which cre-

ates a temporary connection with very specific rights

4. Used in applications to share private data with other users, or to integrate with

external feed readers without requiring separate authentication

5. This differs from User Content Security as that it does not assign permissions to

any particular registered User
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UC-38 User Collaboration

Description Different users can work on the same calendar

Preconditions 1. An editable calendar is shared between two users, User 1 and User 2

2. Calendar data can be stored locally (Server Data Access)

Actors User 1, User 2, Server

Normal Sequence 1. User 1 goes to the shared calendar

2. User 2 goes to the shared calendar

3. User 1 adds a new event to the calendar

4. The new event is submitted to the Server

5. The Server notifies User 2 of the new event

6. User 2’s Client adds the new event to its model

7. User 2 edits the new event, changing the date

8. User 2 submits the change to the Server

9. The Server notifies User 1 of the new event

10. User 1’s Client updates the existing event in its model with the changes

Postconditions The system state is consistent

Exceptions 1. User 1 and User 2 make a change at the same time on different events; both users

are notified of each others change

2. User 1 and User 2 make a change at the same time on the same event; the event is

changed to the last update, and both users are notified of the change

Comments 1. Steps 5 and 9 do not have to be instant; they could only occur every 60 seconds,

for example; but the core concept of this is that it is interactive and realtime

2. Other examples of this include Writely, Spreadsheets
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UC-39 Interactive Map

Description A visitor is given an interactive graphical map of the world, which they can move

around using their mouse

Preconditions A map can be rendered as an image; this image is broken up into many smaller,

separate pieces

Actors Visitor, Client, Server

Normal Sequence 1. The Visitor is displayed an image of part of a map

2. The Visitor uses the mouse to drag the map to the right

3. The Client moves the map image according to the mouse movement

4. If the newly-revealed parts of the larger map image have not been loaded yet:

(a) The Client requests the Server for the map parts

(b) The Server returns the image parts

(c) The Client displays the new images by replacing older images in the map

Postconditions

Exceptions 1. The Client cannot contact the Server; an error message is displayed, or a “missing

image” is displayed

2. The Server does not have map imagery for the missing coordinates; a “no image

exists; zoom out” image is returned instead

Comments 1. This allows for Clients to browse a large image by only downloading the parts

relevant to the current query

2. There must be some way to jump to specific co-ordinates in the larger map, without

having to browse the map first

3. The obvious example is Google Maps

UC-40 Drag and Drop

Description The user can use drag and drop to intuitively move e-mails from one folder to another

Preconditions

Actors User, Client, Server

Normal Sequence 1. The User is displayed a list of e-mails in their inbox

2. The User uses the mouse to drag and drop an e-mail from the inbox to the trash

icon

3. While being dragged, a highlight of the e-mail is displayed under the mouse cursor

4. When dropped, the Client:

(a) Contacts the Server to move the selected e-mail to the trash

(b) Removes the selected e-mail from the inbox, and updates the trash messages

count

5. The Server moves the selected e-mail to the trash

Postconditions

Exceptions 1. The escape key is pressed while dragging; the operation is cancelled

2. The e-mail is dragged to an invalid area on the screen; nothing happens

3. The e-mail is dragged outside the Client window; nothing happens

Comments
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UC-41 Client Timer Support

Description The Client can automatically save a draft of the e-mail every ten minutes

Preconditions The Client is working on a local e-mail (Server Data Access); the Client can access

the Server

Actors User, Client, Server

Normal Sequence 1. The User is working on an e-mail on the Client

2. Every ten minutes:

(a) The Client submits a copy of the e-mail to the Server

(b) The Server saves the e-mail as a draft copy

(c) The Client displays “Auto-saved at (time)”

Postconditions The e-mail object is automatically saved every ten minutes

Exceptions 1. The e-mail has not changed in the last ten minutes; the Server is not contacted

2. The Server cannot be contacted for any reason; the e-mail draft save is ignored,

and the auto-saved message changes to “Could not auto-save”

3. The e-mail no longer exists on the Server; an error message is displayed to the

User, and the User is asked if they would like to save the current draft

Comments Usually implemented with a setTimeout() command through Javascript

UC-42 Server Timer Support

Description The Server can automatically e-mail users new products every four hours

Preconditions 1. New products are added to a database on the Server

2. A User has requested that they are e-mailed every four hours of new product list-

ings

3. This process has not occurred for at least four hours

Actors User, Server

Normal Sequence 1. The Server gets a list of all the products added in the last four hours

2. The Server composes an e-mail listing all of these new products

3. The Server sends the e-mail to the User (E-mailing Users)

4. The current time is saved as the time this process was last executed

Postconditions The User has received an e-mail of new products

Exceptions 1. The e-mail cannot be sent; see exceptions in E-mailing Users

2. There are no new products added in the last four hours; Steps 2 and 3 are skipped

3. The process does not complete; an error message is displayed to the Administrator

Comments 1. Other examples include new listings on auction sites, or digesting the replies from

private messages

2. This is different from Scheduled Events as this use case is executed every 4 hours;

Scheduled Events occurs at the same specified time every day
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UC-43 Page Caching

Description A frequently-requested home page can be cached to reduce unnecessary processing

requirements on the Server

Preconditions The home page has some sort of caching setting (five minutes)

Actors Visitor, Server

Normal Sequence 1. A Visitor requests the home page

2. The Server checks the cache to see if a cached version exists, and its age

3. If the page is too old, the page is recomputed in this request and stored in the cache

4. The cached result is supplied to the Visitor

Postconditions

Exceptions 1. No cached version of the current page exists; it is recompile from scratch (as in

Step 3)

2. The current Visitor is an Administrator; the cache is ignored and the page is re-

constructed every time

Comments 1. This can also be extended to handle page components; e.g. one section of the page

is user account info, another is the home page

2. Cached pages can integrate with other technologies such as memcached or Squid,

or other Content Delivery Networks (CDNs)

3. Page caching should not occur when the application is in a Debug Mode

UC-44 Offline Application Support

Description A Client-based application can be taken offline and continued to be worked on, but no

changes can be saved until it is taken back online

Preconditions Preconditions in Server Data Access

Actors User, Client, Server

Normal Sequence 1. The User is writing an e-mail

2. Access to the web application is taken offline, e.g. a network failure

3. The Client displays a message that the application is offline, but the current e-mail

can still be edited

4. The User continues to work on the e-mail, without being able to save it or send it

5. The application is taken back online; the connection is restored with the Server

6. The ability to save and send the e-mail is restored

Postconditions Postconditions in Server Data Access

Exceptions 1. The User abandon the e-mail while the application is offline; a warning message

is shown and the inevitable data loss is confirmed

2. The User tries to send the e-mail whilst offline; an error message is displayed to

the User informing they cannot send the e-mail until online again

Comments 1. This use case covers the functionality of an offline application, not the storage of

data locally

2. A limited amount of information could be stored through the technologies men-

tioned in Persistent Client Data

3. In some cases, e-mails could still be sent by the client, except they would be

queued up until network connectivity is restored
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UC-45 Loading Time Support

Description While an application is loading, the Server should inform the the User of the progress

through application loading. If the application will take too long to load, the Server

should request the User switches to a different version.

Preconditions The Client can judge the loading process

Actors Visitor, Client, Server

Normal Sequence 1. A Visitor tries to download a large application script

2. The Client starts the download timer

3. After 60 seconds, the Client suggests that the Internet connection is too slow

4. A message is displayed informing the User about the situation, allowing them to

continue waiting (the default), or providing them with a link to a simpler site

Postconditions The web application is loaded, or the User has been redirected to a simpler site

Exceptions 1. The application never loads, or takes more than five minutes; the loading process

is abandoned and the User is taken to the simpler site by default

Comments 1. The Static Views (HTML) use case allows for static HTML pages that could be

simpler than the default web application

2. See also Multiple Browser Support

UC-46 Flash MP3 Support

Description An e-mail with an MP3 attachment can be streamed and played in the webmail appli-

cation using a custom Flash component

Preconditions The User has an e-mail with an MP3 attachment; the Client can render Flash compo-

nents

Actors User, Client, Server

Normal Sequence 1. The User opens an e-mail with an MP3 attached

2. The Server returns the e-mail page, along with a Flash Object

3. The Flash component is loaded by the Client and displays a play button

4. Once the play button is pressed, the MP3 is streamed from the Server by the Flash

component, and played back to the User

Postconditions

Exceptions 1. The User does not have Flash installed; the Server or Client detects the lack of

Flash and instead displays a link to download the MP3 itself

2. The Flash Object fails to load; a link to download the MP3 file is displayed instead

3. The Server fails to stream the MP3; the Flash component is replaced with a link to

download the MP3 file, or try contacting the Server again

Comments 1. If Flash is not installed in the Client, the Client can ask the User if they would like

to install Flash

2. Other options for MP3 support include Java applets and the Quicktime plugin

3. The upcoming HTML5 standard [303] includes a native component for playing

media files
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UC-47 Flash Communication Support

Description A web page wants to display a slider control for number of e-mails to display per

page, using a custom Flash component

Preconditions

Actors User, Client, Server

Normal Sequence 1. The User requests the list of e-mails

2. The Server returns the list of e-mails, along with a slider Flash Object

3. The Client loads the Flash component along with the current setting as a parameter

(50 e-mails per page)

4. The User drags the slider up to 75

5. The Flash component sends a message to the Client via Javascript of the new e-

mails value

6. The Client requests the Server for the 25 previously undisplayed e-mails

7. The Server responds with the 25 e-mails

8. The Client adds the 25 e-mails to the bottom of the e-mail list

Postconditions

Exceptions 1. The Client cannot load the hidden e-mails; the display remains unchanged, and the

slider is reset

2. The Client cannot load a Flash component; a normal slider, or text entry field, is

displayed instead

Comments 1. The Client should also be able to send messages back to the Flash component,

possibly through Javascript

2. If Flash is not installed in the Client, the Client can ask the User if they would like

to install Flash

3. Flash component are often used when fluidity and richness of user interface com-

ponents is a major concern

4. This is a generalised use case of Communication with Plugins

UC-48 Internationalisation Support

Description A web application can have support for multiple locales

Preconditions A web application is translated into at least two locales

Actors Visitor, Server

Normal Sequence 1. The Visitor visits the web application

2. The Server decides the most likely locale for the User, either from request location

or HTTP request header

3. The Server checks to see which supported locale is the closest match

4. The Server presents the page with the translated components

Postconditions

Exceptions 1. The automatically selected locale is incorrect; the Visitor can select a different

locale

Comments 1. Different locales can be provided by different Servers or represented with different

URLs

2. The chosen locale should be stored, probably with a cookie, for future requests
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UC-49 Logout Control

Description If a User logs out from a website, it should not be possible to repeat an activity as that

User

Preconditions The User is authenticated

Actors User, Server

Normal Sequence 1. The User composes a message, and sends it through the web application

2. The User logs out and becomes a Visitor

3. The Visitor presses the back button on their browser, and tries to resubmit the

message

4. The Server realises the Visitor has logged out, and instead displays an error mes-

sage, asking the Visitor to re-authenticate

Postconditions The Visitor cannot do any User actions

Exceptions

Comments 1. If the Client could recognise the Visitor has logged out, the Client could display

an error message instead of allowing the Visitor to browse back in the navigation

history

2. This is an important security-related use case

UC-50 Single Sign-In Solutions

Description An application can use a single centralised sign-on service (SSO) for authentication

support

Preconditions A single sign-on provider exists; the User has an account with this service

Actors Visitor, User, Server

Normal Sequence 1. The Visitor authenticates with a web application

2. The application redirects the User to the SSO service

3. The User authenticates with their SSO details

4. The SSO page informs the Server of the login success

5. The Visitor is redirected to the Server, and is authenticated as a User

Postconditions The Visitor is authenticated as a User

Exceptions 1. The User does not have an account with the SSO service; the SSO service can let

the User create a new account

2. The given SSO ID has been blocked on the local web application; an error message

is displayed to the Visitor, and authentication is blocked

3. The User cannot authenticate with the SSO service; the SSO service should help

with re-establishing authorisation (e.g. lost password)

Comments 1. A common SSO service is Google Accounts

2. A common decentralised SSO service that provides identity, but not trust, authen-

tication is OpenID [250]
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UC-51 User Redirection

Description A visitor can search a database of sites with a search string, and be redirected to a

given site

Preconditions The Visitor can search a database of sites

Actors Visitor, Server

Normal Sequence 1. The Visitor searches for the search string “puppies”

2. The Server returns a list of all the results for “puppies” in its database

3. The Visitor clicks the first search result, which leads to a click-through URL on

the Server

4. The Server notes that the Visitor clicked the first search result for “puppies”

5. The Server sends the Visitor a redirection response to the actual search result URL,

puppies.com

6. The Visitor is redirected to the destination URL, puppies.com

Postconditions The Visitor is now on the third party website puppies.com

Exceptions

Comments 1. The ability to redirect the user is a basic requirement of database-driven websites

2. Redirects can either be internal (to the current web application) or external (to

third party web applications)

3. User redirection can be chained multiple times; care must be taken to prevent

infinite redirections

UC-52 Keyboard Shortcuts

Description A web application can implement keyboard shortcuts to help power users

Preconditions The User has a browser which is capable of intercepting key strokes

Actors User, Client

Normal Sequence 1. The User logs into their e-mail inbox

2. The User presses the “T” key to move to the Trash folder

3. The Client picks up the “T” key being pressed and “clicks” the Trash link

4. The User is redirected to the Trash folder

Postconditions The User is viewing the Trash folder

Exceptions 1. The Client cannot intercept the key stroke (e.g. no Javascript support); nothing

happens

Comments 1. Keyboard shortcuts are useful for power users

2. Keyboard shortcuts should not be too intrusive, and must not occur when trying to

enter in actual data
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UC-53 Undo/Redo Support

Description Whilst working on an online document, the user can undo and redo actions

Preconditions The User is editing a document locally (see Server Data Access), with “Bold”, “Undo”

and “Redo” buttons

Actors User, Client, Server

Normal Sequence 1. The User sets a selection of text to be bolded, and presses the “Bold” button

2. The Client informs the Server, and the Server bolds the text on the document

3. The Client renders the bolded text

4. The User presses the “Undo” button

5. The Client requests an Undo from the Server

6. The Server unbolds the text on the document, and informs the Client of the change

7. The Client renders the un-bolded text

8. The User presses the “Redo” button

9. The Client requests a Redo from the Server

10. The Server bolds the text on the document, and informs the Client of the change

11. The Client renders the bolded text

Postconditions The User is editing the same document

Exceptions 1. The previous action cannot be undone; the Undo button is disabled

2. An undone action cannot be redone; the Redo button is disabled

Comments 1. Could be implemented through an Action design pattern [?]

2. Combining Undo/Redo Support with User Collaboration may introduce some

complex synchronisation problems
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UC-54 Browser-Based Chat

Description Users can open up a browser-based chat window with other users, connected through

the server

Preconditions 1. There are two Users in the same chat room, opened with two Clients

2. Each Client has a connection to the Server

3. User 2 is already connected to the Server

Actors User 1, User 2, Client 1, Client 2, Server

Normal Sequence 1. User 1 connects to the chat room

2. Client 1 opens a connection with the Server

3. The Server sends the Client 1 a list of previous chat messages, which are displayed

to User 1

4. The Server sends a message to Client 2, informing them that User 1 has connected

5. User 2 sends a chat message

6. Client 2 sends the chat message to the Server

7. The Server sends the message to all connected Clients, displaying them to their

Users

Postconditions

Exceptions 1. The connection to the Server cannot be opened; an error message is displayed to

the User, and the chat window is closed

2. The connection to the Server is lost; the Client attempts to reconnect the connec-

tion; once connected, the Server resends the Client a list of any activity whilst

disconnected

3. The connection to the Server is lost, and cannot be reconnected; an error message

is displayed to the User, and the chat window is closed

Comments 1. This is one implementation of a browser-based chat session, with the messages

sent over the open connection and interpreted once received

2. A different implementation (more common) uses active polls on open connections

to keep synchronised with server activity

3. This could be implemented without client-side Javascripts (regular page refreshes)
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UC-55 Pop-up Window Support

Description An application can open pop-up windows to assist users in adding images to e-mails

Preconditions A User is composing an e-mail (see Server Data Access)

Actors User, Client, Server

Normal Sequence 1. The User clicks a button to add an image to the e-mail

2. The Client opens a pop-up window displaying a list of available images

3. The User clicks an image to add to the e-mail

4. The Client closes the pop-up window and adds the image to the e-mail composition

Postconditions The image is added to the e-mail display

Exceptions 1. The User does not select an Image, and closes the window; the Client does not add

any image to the e-mail

2. The User ignores the pop-up window, and only interacts with it once the e-mail

application has been closed; any further action on the window either does nothing,

or displays an error message and closes the window

Comments This can be implemented with any number of technologies, including a normal

browser popup; a modal popup; a Java application; a Flash component; or a Javascript

message dialog

UC-56 Incompatible Client Warning

Description If the Visitor visits the website with a browser/client that cannot fully support all the

features the site absolutely requires, the Visitor is given a warning

Preconditions The web application has some elements that cannot be rendered in the Client

Actors Visitor, Client, Server

Normal Sequence 1. The Visitor visits the website with their incompatible Client

2. The Server recognises the Client, compares it to the list of features needed for the

website to operate correctly

3. The Server identifies the Client is incompatible or misses some features

(a) Proceed anyway, at their own risk

(b) Access an alternative site (e.g. Static Views (HTML)

Postconditions

Exceptions 1. The Client cannot be identified; the Server assumes the Client is fully functional

Comments 1. Some website features may not be “required” but only optional, in which case the

client detection should only occur when trying to access the feature

2. Runtime browser testing could be performed with scripting to work out if the

Client is actually incompatible
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UC-57 Dynamic Objects

Description Depending on the Client accessing the web application, a map component in a web

application can be rendered using scripting technology, or only static HTML

Preconditions The map component cannot be rendered with scripting technology in their Client

Actors Visitor, Server

Normal Sequence 1. The Visitor visits the website with their incompatible Client

2. The Server recognises the Client is incompatible or misses some features

3. The Server instead renders the map component with a static HTML rendering

Postconditions The Visitor can continue to use the site in the same manner as the scripted rendering

Exceptions 1. The Client cannot be identified; the Server assumes the Client is fully functional,

and uses the scripted technology rendering

2. The Client is mis-identified; the Visitor can force the web application to switch to

a different rendering

Comments This differs from Multiple Browser Support in that it is concerned with the rendering

of individual elements, not complete applications
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UC-58 Store Data in Local Database

Description An application can use an offline technology, such as Google Gears [114], to store

data locally in a local database which can be synchronised when network connectivity

is restored

Preconditions 1. The User has Google Gears installed

2. Preconditions in Communication with Plugins

3. The User initially has network connectivity

4. The current web application supports offline operation

Actors User, Client, Server

Normal Sequence 1. The User visits the web application

2. The Client creates a local database to store changes

3. The User loses network connectivity; the application continues to function as ex-

pected

4. The User interacts with the offline application

5. The Client saves changes to the local database

6. The User restores network connectivity:

(a) The Client recognises the User has gone back online

(b) The Client contacts the Server and publishes its changes

(c) The Client deletes the information in the local database

7. The User can continue to use the application as expected

Postconditions The system is in a consistent state

Exceptions 1. The User does not have Google Gears installed; a message is displayed to the User

informing them that work will otherwise be lost when network connectivity is lost

2. The Client recognises its database is out of sync with the Server database; the

Client informs the User and gives them synchronisation options

Comments 1. Data does not have to be submitted back to the server; it can be stored on the client

indefinitely

2. It is a reasonable assumption that data cannot be expected to be stored forever on

the client

3. The major issue with storing data locally is synchronisation, especially between

multiple independent clients

4. The major use case of offline technology appears to be in interacting with mostly-

read-only data sources

5. Individual resources (images, videos) can be stored through Store Resources Lo-

cally
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UC-59 Store Resources Locally

Description An application can use an offline technology, such as Google Gears [114], to store web

application resources (images, CSS, Javascript etc) on the local machine, to allow the

application to go offline

Preconditions 1. The User has Google Gears installed

2. Preconditions in Communication with Plugins

3. The User initially has network connectivity

4. The current web application supports offline operation

Actors User, Client, Server

Normal Sequence 1. The User visits the web application

2. The Client creates a list of resources necessary for offline operation, including a

remote image

3. The Client downloads these resources, including the remote image, and stores

them locally

4. The User loses network connectivity

5. The User interacts with the Client, which needs to display the remote image

(a) The Client retrieves the image from the local machine

(b) The Client returns the image to the browser, which is displayed to the User

identically to online operation

Postconditions

Exceptions 1. Exceptions in Store Data in Local Database

2. An image is requested which is not in the local cache; either an empty image is

displayed, or an error message is shown

Comments 1. Compared to Store Data in Local Database, the resources loaded in this method

cannot be modified

2. The offline technology must handle modified resources whenever the resource

cache is synchronised
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UC-60 Multiple Client Threads

Description A rendered web application can execute in multiple threads, possibly asynchronously,

on the Client

Preconditions The Client can run multiple threads

Actors User, Client

Normal Sequence 1. A Client starts an operation

2. The Client splits the operation execution into a second thread

3. The User continues to interact with the Client in one thread, while the other thread

works in the background

4. At some point, the second thread will terminate

Postconditions The second thread has terminated

Exceptions 1. The Client cannot run threads; either the threads can be run virtually, or an error

message is displayed to the User

2. The second thread terminates unexpectedly; either the thread is restarted, or an

error message is displayed to the User

Comments 1. Currently no major browser supports multiple Javascript threads, but may be im-

plemented in the future

2. A thread could be native or virtual (run with ticks in a single thread)

3. The implementation of the WorkerPool in Google Gears [114] achieves some level

of multiple Client threading
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UC-61 Multiple Server Threads

Description A web application can execute in multiple threads, possibly asynchronously, on the

Server

Preconditions The Server can run multiple threads

Actors Server

Normal Sequence 1. The Server starts an operation

2. The Server splits the operation execution into a second thread

3. At some point, the second thread will terminate

Postconditions The second thread has terminated

Exceptions 1. The Server cannot run threads; either the threads can be run virtually, or an error

message is displayed to the Administrator

2. The second thread terminates unexpectedly; either the thread is restarted, or an

error message is displayed to the Administrator

Comments Server-side multiple threading is quite common, however concurrency and scalability

issues often restrict its use

UC-62 Communication with Plugins

Description A client application can communicate with browser plugins, for example, interaction

with Google Gears

Preconditions A Client has the Google Gears plugin installed; the Client can directly communicate

with installed plugins

Actors User, Client, Server

Normal Sequence 1. The User visits a web application

2. The Client searches for an installed copy of Google Gears

3. The Client finds that Google Gears has been installed, and creates a new local

instance of the Google Gears factory

4. The Google Gears factory can then be used to create additional objects, such as

the DataStore and Local Resource Pool

Postconditions

Exceptions 1. Step 3: The user does not have Google Gears installed; either an error message

can be displayed, or the exception can be ignored

Comments 1. Plugin technologies include ActiveX (for Internet Explorer) and NPAPI (for Fire-

fox)

2. Other use cases for communicating with plugins include identifying installed ver-

sions or executing functionality

3. Flash Communication Support is a particular instance of using plugins to interact

with a rendered page
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UC-63 Scheduled Events

Description A Server can have a daily scheduled event (e.g. at 5am every day) to send new blog

entries to every User on the system.

Preconditions There is a list of Users on the system; the scheduled time has arrived (i.e. 5am)

Actors Server

Normal Sequence 1. The Server iterates through recent blog entries and constructs a message of new

entries

2. The Server iterates through all Users in the system

3. The Server sends an e-mail (E-mailing Users) to each User with this message

4. The Server proceeds onto the next user

Postconditions All users have been processed.

Exceptions 1. The scheduled event is skipped; the event is executed as soon as possible

2. The scheduled event is cancelled or unexpectedly terminated; an error message is

displayed to the Administrator, and the process may be restarted from where it left

off

Comments See Server Timer Support for a process which occurs regularly, instead of at a specific

scheduled time.

UC-64 Custom API Publishing

Description A blogging website can publish a custom API (e.g. the LiveJournal API) to allow

external software/websites to post blog content

Preconditions The Server has a published API endpoint, along with an expected API message format

Actors Server, User or Remote Server

Normal Sequence 1. The User or Remote Server constructs a PostMessage message

2. The User submits the PostMessage message to the Server’s published API end-

point

3. The Server receives and parses this PostMessage message

4. The Server creates a new blog entry, based on the input from the posted message

5. The Server saves the blog entry, and returns an “OK” message

Postconditions

Exceptions 1. The message cannot be parsed; an error message is returned via the web service

2. The blog entry cannot be saved; an error message is returned via the web service

Comments 1. Compared to Web Service, this use case covers the publication of a custom API,

not necessarily using a published protocol

2. This is often achieved through custom JSON [56], XML or REST APIs
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UC-65 Runtime Interface Updates

Description The Client can update the user interface of a calendar site based on User input, without

reloading or redirecting the Client

Preconditions The Client can run Javascript scripts; the User is viewing a monthly calendar page

Actors User, Client

Normal Sequence 1. The User selects “two weeks” as the calendar view

2. The Client replaces the monthly view of the calendar with a fortnightly view, with-

out reloading or redirecting the Client

Postconditions The User is viewing a fortnightly calendar page

Exceptions 1. The Client needs to load data asynchronously from the Server, but cannot contact

it; the Client instead reloads the current page, or an error message is displayed to

the User

Comments This use case includes loading data asynchronously using AJAX technologies

UC-66 Out-of-Order Events

Description The Client can ignore events which come out of order, for example when requesting

a list of search results that start with a particular prefix

Preconditions The Client can send/receive asynchronous messages

Actors User, Client, Server

Normal Sequence 1. The User enters in “a”

2. The Client sends an asynchronous request to the Server (message 1) for results

starting with “a”

3. The Server receives message 1, and sends back a list of results (response 1)

4. The User enters in “ab”

5. The Client sends an asynchronous request to the Server (message 2) for results

starting with “ab”

6. The Server receives message 2, and sends back a list of results (response 2)

7. The Client receives response 2, and displays a list of results starting with “ab”

8. The Client receives response 1, but recognises that message 2 was sent later; the

Client ignores this response

Postconditions A list of results starting with “ab” are displayed

Exceptions 1. Response 2 does not arrive after a specified timeout period; the result from re-

sponse 1 is displayed, and message 2 is resent

Comments 1. In some cases, it may be desirable to display both responses, even if they are out

of order

2. In extreme cases, where the order of messages is truly important, an additional

layer of network control should be implemented (similar to TCP)
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UC-67 Backwards-Compatible Scripting

Description Non-essential functionality in scripted web applications do not affect the operation of

web applications on incompatible clients; for example, a button should light up when

it is clicked

Preconditions An incompatible client is accessing a web application with a button, that is using

incompatible scripting

Actors User, Server

Normal Sequence 1. The User clicks on a button

2. The Client tries to “light up” the button

3. The Client-side animation fails, but the failure is caught by the Client

4. The execution of the button clicking continues as normal

Postconditions The button is clicked

Exceptions

Comments 1. If scripted functionality is actually required, then the Client should be redirected

to a more suitable application rendering, as in Incompatible Client Warning or

Multiple Browser Support

2. The less desirable alternative is for the incompatible scripting to throw an error

message, that prevents the button from functioning at all

UC-68 Spellchecking

Description A form can be spellchecked, either at submit or at runtime.

Preconditions A form can be edited by the User

Actors User, Server

Normal Sequence 1. The User enters in some incorrect text onto the form

2. The User submits the form to the server

3. The Server checks the submitted data for spellchecking, to ensure the text is en-

tered in correctly

4. The submitted data is saved

Postconditions The submitted data is fully spellchecked

Exceptions 1. Step 3, the submitted data is badly spelt; the Server presents the User with a list of

possible corrections, and goes back to Step 1

Comments 1. Some Clients support spellchecking natively

2. If Internationalisation Support is supported, spellchecking must also take into ac-

count the different locales
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UC-69 Autocomplete

Description The user may enter data into a text field using autocomplete in order to simplify the

data entry process

Preconditions An empty text field can be edited by the User

Actors User, Client, Server

Normal Sequence 1. The User enters a few characters into the text field, and this represents the query

2. The Client contacts the Server with an aysnchronous message to search for valid

search results to the query

3. The Server identifies valid search results for the query and returns them to the

Client

4. The Client displays a dropdown box of each of these search results

5. The User clicks one of the displayed search results

6. The Client hides the dropdown box, and replaces the text field with the value of

the valid search result

Postconditions The text field is no longer empty

Exceptions 1. Step 3, there are no valid search results; the Server returns an empty list, and the

Client does not display any dropdown box

2. Step 4, the User has entered in additional characters into the text field, before the

asynchronous search has completed; the Client ignores the results of this search,

and proceeds from Step 2

3. Step 5, the User removes focus from the text field without selecting a search result;

the Client hides the dropdown box

Comments 1. This use case was discussed previously by Wright and Dietrich [323]

2. Some of the exceptions in this use case are related to the Out-of-Order Events use

case

3. The search interface may be provided as a public API, as in the Custom API Pub-

lishing use case

4. Navigation through the dropdown box of search results may be supported through

Keyboard Shortcuts





Appendix B

Benchmarking Application

The general structure of the benchmarking application is illustrated in Figure B.1.

TODO Add more information about the benchmarking application.

TODO Include the list of requirements. Or should this be excluded, and the reader referred to

the paper? This list of requirements is in input file background-requirements.tex. For now, I

will assume that the reader can access the full list; the abridged list (for Basic RIAs) is nevertheless

included in the Evaluation chapter.
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Figure B.1: Ticket 2.0 Application Page Structure, adapted from Wright and Dietrich [322]



Appendix C

Modelling Complex Behaviour with

Activity Operations

As discussed earlier in Section ??, IAML supports the definition of complex behaviour through Activ-

ity Operations as a form of operation modelling derived from the UML activity diagram metamodel.

This metamodel consists of 23 model elements1 as illustrated here in the UML class diagrams of

Figures C.2 and C.3.

As illustrated in Figure C.1, an Activity Operation is defined as the composition of a number of

Activity Nodes, which are connected via Execution Edges and Data Flow Edges. Execution Edges

represent the execution flow of the particular operation, and Data Flow Edges represent the flow of

data within the particular operation.

Importantly, IAML defines Activity Operations as an extension of the IAML metamodel, meaning

that this subset of the metamodel may safely be removed if model completion is not used within the

development environment. This design requirement represents the motivation for model elements such

as External Value and Operation Call Node, which act as a bridge to core model elements.

C.1 Execution Flow Nodes

In a Activity Operation, the execution flow is analogous to the the control flow of UML activity

diagrams [227, pg. 295], and is defined by connecting execution nodes with Execution Edges. A full

discussion of each subtype of Execution Node are discussed later in Appendix ??, but a UML class

diagram for these nodes are illustrated here in Figure C.2.

Decision Nodes and Operation Call Nodes both support the concept of failure edges and success

edges, which apply to outgoing Execution Edges from that node. For each node, all outgoing Execu-

tion Edges with a name beginning with the characters n or f2 represent the failure edges. All other

Execution Edges from each node represent the success edges.

Activity Operations also support the concept of multithreading through the Split Node and Join

Node model elements, which are conceptually similar to the ForkNode and JoinNode model elements

of UML activity diagrams [227, pg. 295–417]. In a similar fashion to UML, modelled concurrency

within IAML does not necessarily imply a distributed implementation, as an implementation of IAML

1The abstract classes Execution Node and Data Flow Node described in Figures C.2 and C.3 have not been implemented

in Appendix ??, but are introduced here as empty interfaces in order to simplify the class diagram structures.
2This definition covers the most common ways of specifying a negative result in English, including n, no, fail or false.
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Figure C.1: UML class diagram for the Activity Package: Operations Model

may group together these threads and execute them sequentially in a manner which preserves its

behaviour.

Multithreading is a fairly novel concept within RIAs, as Javascript does not internally support

multithreading3 , with the exception of recent extensions such as WorkerPool through Google Gears

[114]. A modelling language with concurrency support should also define constructs to control this

concurrency, such as access locks or volatile properties, or defining the semantics of multithreaded

access to shared properties. However, these constructs fall well outside the scope of the Basic RIA

requirements, as discussed earlier in Section 5.1.1, and adding these constructs to IAML remains

future work.

C.2 Data Flow Nodes

In a Composite Operation, the data flow represents the object flow of UML activity diagrams [227,

pg. 295], and is defined by connecting data flow nodes with Data Flow Edges. This data flow graph

is similar to a data flow diagram [247, pg. 311], except that the relationships between data sources

and data targets are not transitions themselves. A full discussion of each subtype of Data Flow Node

are discussed later in Appendix ??, but a UML class diagram for these nodes are illustrated here in

Figure C.3.

Activity Parameters allow an Activity Operation to specify named parameters, allowing the oper-

ation to be reused in other contexts. If an Activity Operation is executed as an Action, any incoming

Parameters to the connecting ECA Rule are passed as Activity Parameters to the Activity Operation.

C.3 Activity Predicates

In an analogous fashion to allowing a model developer to describe complex behaviour using Builtin

Operations and Activity Operations, IAML allows the model developer to describe complex condi-

tions using Builtin Properties and Activity Predicates. A full description of each Builtin Property is

provided in Appendix ??.

3Within a web browser, each window has a single thread for executing Javascript; even AJAX callbacks must wait to be
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Figure C.2: UML class diagram for the Activity Package: Execution Model

The Activity Predicate model element is defined in a similar fashion to the Activity Operation

model element, as illustrated here in Figure C.4. However, the semantics of the Finish Node and

Cancel Node elements are modified. If the execution flow of a Composite Condition arrives at a

Finish Node, the Condition is taken to be successful. Similarly, if the execution flow of a Composite

Condition arrives at a Cancel Node, the Condition is taken to be unsuccessful.

processed by this thread.
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Figure C.3: UML class diagram for the Activity Package: Data Flow Model

Figure C.4: UML class diagram for the Activity Package: Predicates Model



Appendix D

Documentation By Example: Sync Wire

In this chapter, two important concepts behind the design and implementation of IAML will be illus-

trated through an example. In particular, this appendix will show the intended behaviour of model

completion, where default conventions are used to automatically infer missing knowledge within a

model instance; and Wires, where a model developer can use instances of reusable patterns to im-

plement common functionality within web applications. This example is based from the Ticketiaml

model instance in Appendix J.

As discussed earlier in Section 5.8.1, a Sync Wire may be used to keep the values of two elements

synchronised, including user interface elements and instances of domain types. Within Ticketiaml,

a Sync Wire is used in the implementation of the “Edit Event” page, where a manager may edit a

selected Event instance as illustrated earlier in Figure 5.21; in particular, a Sync Wire is used to keep

an Input Form and Domain Iterator synchronised.

Initially, the only contents within this form and iterator is a Button that is used to save the current

instance within the Domain Iterator. When model completion is executed, many elements will be

inserted into the model instance as defined by the model completion rules in Sections ?? and ??:

1. The builtin operations and properties of the iterator will be completed.

For the Domain Iterator, operations such as next and previous will be completed with instances

of Builtin Operations; properties such as has next and has previous will be completed with

instances of Builtin Properties; and the current instance of the iterator will be completed with

an instance of a Domain Instance. The result of this step is illustrated in Figure D.11.

2. The feature instances of the Domain Instance will be completed.

The newly-created Domain Instance will be completed with Domain Feature Instances for

every Domain Feature defined by the Domain Type of the iterator, as discussed earlier in Sec-

tion 5.5.3. Based on the schema of the Event type in Figure 5.17, this instance will be completed

as illustrated in Figure D.2. Each Domain Attribute Instance must also be connected to an un-

derlying Domain Attribute, and this relationship is expressed as instances of Extends Edges.

3. The Edit Event Input Form will be completed with Input Text Fields.

As discussed earlier in Section 5.8.1, one of the key features of a Sync Wire is that it will

automatically complete the contents of connected elements. This means that the Edit Event

1This figure also illustrates the use of the forward slash name prefix “/” to highlight elements generated through model

completion, as discussed in Section 7.4.4.
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... > Frame: ’Edit Event’ > DomainIterator: ’selected event’

/onChange

/<...>

/: Event

/Container: selected event

/onIterate

/on iterate

/: Event

/Container: selected event

/results

/results count

/: Value

/Type: Any

/Container: selected event

/previous

/: BuiltinOperation

/Container: selected event

/next

/: BuiltinOperation

/Container: selected event

/reset

/: BuiltinOperation

/Container: selected event

/skip

/: BuiltinOperation

/Container: selected event

save

: BuiltinOperation

Container: selected event

/hasPrevious

/has previous

/: BuiltinProperty

/Container: selected event

/hasNext

/has next

/: BuiltinProperty

/Container: selected event

/empty

/empty

/: BuiltinProperty

/Container: selected event

/not empty

/: ActivityPredicate

/Container: selected event

/results count is set

/: ActivityPredicate

/Container: selected event

/Current instance

/: DomainInstance

Figure D.1: Ticketiaml: The completed contents of the edit event Domain Iterator

Input Form will be completed with a Input Text Field for each Domain Attribute Instance

within the connected Domain Instance2.

Another key feature of a Sync Wire is that it will also connect new sub-Sync Wires to these

generated elements where appropriate. This means that each Input Text Field will be connected

to its corresponding Domain Attribute Instance with a new Sync Wire. The Edit Event Input

Form will therefore be completed as illustrated in Figure D.33.

However, not all of the attributes of an Event should be editable by the manager; in particular,

it should not be possible to edit the id of the Event, which is a primary and unique key for

each Event instance. In the Ticketiaml model, the Edit Event Input Form defines “id” as an

overridden name; as discussed in Section 7.5.2, this means that no Input Text Field for the id

attribute instance will be generated.

4. Each Input Text Field will be completed with the behaviour necessary to implement syn-

chronisation with their corresponding Domain Attribute Instance.

Finally, the underlying logic of a Sync Wire will be generated through model completion, as

illustrated in Figure D.44:

(a) When the Input Text Field is accessed – either for the first time, or if the containing page is

subsequently reloaded – the field should be initialised with the current value of the Domain

Attribute Instance. This is achieved with an ECA Rule on the onAccess event of the text

field that executes its init operation.

(b) When the Domain Attribute Instance changes, the field should be updated with the value

of the attribute instance. This is achieved with an ECA Rule on the onChange event of the

2As discussed earlier in Section 5.5.4, since a Domain Iterator can only ever contain a single Domain Instance, a Sync

Wire for an instance may connect directly to the iterator itself.
3This partial figure does not include elements generated by other model completion rules, including Events such as

onAccess and Builtin Operations such as show and hide.
4Similarly to Figure D.3, this partial figure does not illustrate other elements normally generated such as the onInput and

onClick events; Builtin Operations such as show and hide; or Builtin Properties such as empty and not empty.
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... > DomainIterator: ’selected event’ > DomainInstance: ’current instance’

/id

/: DomainAttributeInstance

/Type: xsd:integer

/Container: Current instance

/event_date

/: DomainAttributeInstance

/Type: builtin:iamlDateTime

/Container: Current instance

/tickets_left

/: DomainAttributeInstance

/Type: xsd:integer

/Container: Current instance

/updated

/: DomainAttributeInstance

/Type: builtin:iamlDateTime

/Container: Current instance

/created

/: DomainAttributeInstance

/Type: builtin:iamlDateTime

/Container: Current instance

/description

/: DomainAttributeInstance

/Type: xsd:string

/Container: Current instance

/title

/: DomainAttributeInstance

/Type: xsd:string

/Container: Current instance

/venue

/: DomainAttributeInstance

/Type: builtin:iamlAddress

/Container: Current instance

id

: DomainAttribute

Type: <...>

[none]

event_date

: DomainAttribute

Type: <...>

[none]

tickets_left

: DomainAttribute

Type: <...>

[none]

updated

: DomainAttribute

Type: <...>

[none]

created

: DomainAttribute

Type: <...>

[none]

description

: DomainAttribute

Type: <...>

[none]

title

: DomainAttribute

Type: <...>

[none]

venue

: DomainAttribute

Type: <...>

[none]

/: ExtendsEdge /: ExtendsEdge /: ExtendsEdge /: ExtendsEdge

/: ExtendsEdge /: ExtendsEdge /: ExtendsEdge /: ExtendsEdge

Figure D.2: Ticketiaml: The completed contents of the Event-typed Domain Instance

attribute instance that executes the update operation on the text field.

(c) Conversely, when the Input Text Field changes, the attribute instance should be updated

with the value of the text field. This is achieved with an ECA Rule on the onChange event

of the text field that executes the update operation on the attribute instance.

This model completion logic is performed for every Input Text Field within the Edit Event Input

Form in a similar fashion. Since both the Input Text Field and Domain Attribute Instance have

the same name, it is important to note that shortcut elements – those with the annotation –

are references to external elements, as discussed in Section 7.4.4.

The “Edit Event” page of Ticketiaml forms a small part of the manual implementation of the

web application, and relies heavily on model completion rules to implement common functionality.

Once transformed through the code generation framework of IAML and loaded in a web browser, this

completed functionality may be rendered as illustrated in Figure D.5.
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... > Frame: ’Edit Event’ > InputForm: ’Edit Event’

Save

: Button

Container: Edit Event

/venue

/: InputTextField

/Type: builtin:iamlAddress

/Container: Edit Event

/title

/: InputTextField

/Type: xsd:string

/Container: Edit Event

/description

/: InputTextField

/Type: xsd:string

/Container: Edit Event

/created

/: InputTextField

/Type: builtin:iamlDateTime

/Container: Edit Event

/updated

/: InputTextField

/Type: builtin:iamlDateTime

/Container: Edit Event

/tickets_left

/: InputTextField

/Type: xsd:integer

/Container: Edit Event

/event_date

/: InputTextField

/Type: builtin:iamlDateTime

/Container: Edit Event

save

: BuiltinOperation

Container: selected event

/venue

/: DomainAttributeInstance

/Type: builtin:iamlAddress

/Container: Current instance

/title

/: DomainAttributeInstance

/Type: xsd:string

/Container: Current instance

/description

/: DomainAttributeInstance

/Type: xsd:string

/Container: Current instance

/created

/: DomainAttributeInstance

/Type: builtin:iamlDateTime

/Container: Current instance

/updated

/: DomainAttributeInstance

/Type: builtin:iamlDateTime

/Container: Current instance

/tickets_left

/: DomainAttributeInstance

/Type: xsd:integer

/Container: Current instance

/event_date

/: DomainAttributeInstance

/Type: builtin:iamlDateTime

/Container: Current instance

onClick

: ECARule

/sync

/: SyncWire

/sync

/: SyncWire

/sync

/: SyncWire

/sync

/: SyncWire

/sync

/: SyncWire

/sync

/: SyncWire

/sync

/: SyncWire

Figure D.3: Ticketiaml: The completed contents of the Edit Event Input Form

... > InputForm: ’Edit Event’ > InputTextField: ’title’

onAccess

/<...>

: Event

Container: title

onChange

/<...>

: Event

Container: title

/init

: BuiltinOperation

Container: title

/update

: BuiltinOperation

Container: title

fieldValue

/fieldValue

: Value

Type: xsd:string

Container: title

fieldValue

/fieldValue

: Value

Type: xsd:string

Container: title

onChange

/<...>

: Event

Container: title

/update

: BuiltinOperation

Container: title

/run

: ECARule

/[sync] source.access

: Parameter

/run

: ECARule

/[sync] source.edit

: Parameter

/run

: ECARule

/[sync] source.edit

: Parameter

Figure D.4: Ticketiaml: The completed contents of the title Input Text Field to implement

synchronisation
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Figure D.5: A screenshot of the Edit Event page implemented in Ticketiaml





Appendix E

OpenBRR Evaluations of Model-driven

Technologies

In Chapter 6, fifteen projects were evaluated against the 28 open source quality metrics defined by

OpenBRR [234]. The values of each metric for each technology is published here in Tables E.1, E.2

and E.3. For a given project, each individual metric may have a score between 1 (unacceptable) and 5

(excellent), as dictated by the representative scores given in OpenBRR.org [234].
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Category Alloy ArgoUML CrocoPat Dresden OCL Drools

Usability

End-user UI 5 3 3 5 3

Installing prerequisites 5 5 5 4 4

Vanilla install 5 5 5 5 4

Quality

Minor releases 1 5 1 3 3

Point/patch releases 1 5 1 1 3

Open bugs 5 4 5 5 3

Fixed bugs 5 3 1 4 2

Critical bugs 5 4 5 4 2

Age of critical bugs 5 4 5 1 1

Security

Number of issues 5 5 5 5 1

Unpatched issues 5 5 5 5 1

Security web page 1 1 1 1 1

Performance

Benchmarks 5 1 5 1 5

Tuning 1 1 5 1 5

Scalability

Reference deployment 5 3 3 3 5

Scalable design 5 1 3 1 5

Architecture

Third-party plug-ins 5 5 1 3 5

Public API 3 5 1 3 5

Support

Mailing list volume 1 1 1 1 4

Professional support 1 1 1 1 5

Documentation

Variety 4 3 5 4 5

User contributions 1 1 1 1 5

Adoption

Books 2 1 1 1 3

Reference deployment 5 3 3 3 5

Community

Mailing list volume 1 1 1 1 4

Unique contributors 1 2 1 2 3

Professionalism

Project driver 2 2 2 2 4

Difficulty to enter 1 3 1 1 5

Total 91 83 77 72 101

Table E.1: Evaluations of model-driven technologies against OpenBRR ratings (1)
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Category EMFV OCL EMF GEF GMF Jena

Usability

End-user UI 3 5 5 3 3

Installing prerequisites 5 5 5 5 5

Vanilla install 5 5 5 5 5

Quality

Minor releases 3 5 1 3 5

Point/patch releases 5 5 5 1 1

Open bugs 5 3 3 3 5

Fixed bugs 1 4 3 3 2

Critical bugs 1 3 5 4 5

Age of critical bugs 5 1 5 1 5

Security

Number of issues 5 5 5 5 5

Unpatched issues 5 5 5 5 5

Security web page 1 1 1 1 1

Performance

Benchmarks 1 5 1 1 5

Tuning 1 5 1 3 5

Scalability

Reference deployment 3 5 5 5 5

Scalable design 3 5 3 3 3

Architecture

Third-party plug-ins 1 3 2 3 3

Public API 5 5 1 5 5

Support

Mailing list volume 1 4 2 3 3

Professional support 5 5 5 5 1

Documentation

Variety 5 5 4 3 4

User contributions 5 5 5 5 1

Adoption

Books 1 3 3 2 1

Reference deployment 3 5 5 5 5

Community

Mailing list volume 1 4 2 3 3

Unique contributors 1 4 2 3 1

Professionalism

Project driver 5 5 5 5 4

Difficulty to enter 5 5 5 5 3

Total 90 120 99 98 99

Table E.2: Evaluations of model-driven technologies against OpenBRR ratings (2)
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Category JET Marama NuSMV OAW Xpand

Usability

End-user UI 5 1 1 5 5

Installing prerequisites 5 3 5 5 5

Vanilla install 5 3 5 5 5

Quality

Minor releases 5 1 3 1 5

Point/patch releases 3 3 3 1 1

Open bugs 5 5 1 5 5

Fixed bugs 4 3 1 5 2

Critical bugs 5 2 1 5 4

Age of critical bugs 5 1 1 5 1

Security

Number of issues 5 5 1 5 5

Unpatched issues 5 5 1 5 5

Security web page 1 1 1 1 1

Performance

Benchmarks 1 1 3 1 3

Tuning 1 1 3 1 5

Scalability

Reference deployment 5 5 5 5 5

Scalable design 1 1 3 1 1

Architecture

Third-party plug-ins 5 1 2 3 3

Public API 3 1 3 5 5

Support

Mailing list volume 3 1 1 1 3

Professional support 5 1 1 5 5

Documentation

Variety 3 3 4 4 5

User contributions 5 1 1 1 5

Adoption

Books 1 1 1 3 1

Reference deployment 5 5 5 5 5

Community

Mailing list volume 3 1 1 1 3

Unique contributors 1 1 1 1 1

Professionalism

Project driver 5 2 2 4 5

Difficulty to enter 5 1 3 5 5

Total 105 60 63 94 104

Table E.3: Evaluations of model-driven technologies against OpenBRR ratings (3)
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Model Checking using NuSMV:

Evaluation of the Infinitely Redirects

constraint

As discussed earlier in Section 6.6.8, the implementation of the infinitely redirects model verification

constraint in the NuSMV framework requires a considerable amount of definitions in order to define

the behaviour of a web browser, and the functionality of the web application under consideration.

This appendix provides the necessary code to evaluate this constraint on a simple IAML model

instance, which consists of two Frames – named page1 and page2 – which each define an onAccess

Event that redirects to the other page through an ECA Rule. As described in Section 7.7.4, these

definitions are generated automatically using the openArchitectureWare framework1.

-- main module

MODULE main

VAR

-- all pages

current_page : {null, page1, index, page2};

-- allowing NuSMV to select pages at random

browse_to_page : {null, page1, index, page2};

-- flags

operation_running : boolean;

operation_finished : boolean;

navigation_running : boolean;

navigation_finished : boolean;

ASSIGN

init (operation_running) := 0;

init (operation_finished) := 0;

init (navigation_finished) := 1;

-- we start off without being on any page

init (current_page) := null;

-- click_button is chosen by nusmv

-- browse_to_page is chosen by nusmv

1TODO: Pygments environment for NuSMV.
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next (operation_running) := case

1 : 0;

esac;

next (operation_finished) := case

1 : 0;

esac;

-- browsing to a new page

next (current_page) := case

-- cannot navigate away until finished navigating

navigation_running = 1 : case

-- does the current page have a redirection attached?

current_page = page1 : -- an instant redirect

page2;

current_page = index : current_page;

-- we must have stopped navigating

current_page = page2 : -- an instant redirect

page1;

-- no redirections; stay where we are

1 : current_page;

esac;

-- cannot navigate away while executing an operation

operation_running = 1 : current_page;

-- browse to another page chosen by NuSMV

browse_to_page = page1 : page1;

browse_to_page = index : index;

browse_to_page = page2 : page2;

-- finally, otherwise, stay where we are

1 : current_page;

esac;

next (navigation_running) := case

-- we are currently navigating

navigation_running = 1 : case

current_page = page1 : -- an instant redirect

1;

current_page = index : 0;

-- we must have stopped navigating

current_page = page2 : -- an instant redirect

1;

current_page = null : 0;

-- should never occur

esac;

-- cannot navigate away while executing an operation

operation_running = 1 : 0;

-- browse to another page chosen by NuSMV

browse_to_page = page1 : 1;

browse_to_page = index : 1;
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browse_to_page = page2 : 1;

-- otherwise, we are not navigating

1 : 0;

esac;

next (navigation_finished) := case

-- we are currently navigating

navigation_running = 1 : case

current_page = page1 : -- an instant redirect

1;

current_page = index : 1;

-- we must have stopped navigating

current_page = page2 : -- an instant redirect

1;

current_page = null : 0;

-- should never occur

esac;

-- cannot navigate away while executing an operation

operation_running = 1 : 1;

-- browse to another page chosen by NuSMV

browse_to_page = page1 : 0;

browse_to_page = index : 0;

browse_to_page = page2 : 0;

-- otherwise, we are not navigating

1 : 1;

esac;

-- checks for infinite loops in redirections

LTLSPEC

G ((!(navigation_running = 1 -> !(F navigation_finished = 1)))

U navigation_running = 0)
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Rule Set Summary

The inclusion of the source code of each model completion rule used in the implementation of IAML

is well outside the scope of this thesis; as discussed earlier in Section 7.5.2, the Rule Set defines

261 individual rules over 21 packages. Each of these rule packages implement one aspect of model

completion, and a summary of the model completion rules used in IAML is provided here in Table G.1.

TODO Update this table, including the metrics.
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Rule File Rules Description

autocomplete-wires.drl 13 Completes the functionality of Autocomplete Wires.

base.drl 6 Creates ‘field value’ Values and the related ‘is set’ Condition.

casting.drl 6 Rules related to types and casting, and the ’can cast?’ Condition.

conditions.drl 8 Connects Simple Conditions and Parameters due to Wire com-

pletion.

detail-wires.drl 9 Completes the functionality of Detail Wires.

domain.drl 3 Rules relating to Domain Types.

emails.drl 5 Completes the default Values of Emails.

events.drl 2 Create the default Events for Accessible and Changeable ele-

ments.

file-domain-object.drl 2 Rules relating to Domain Sources of .properties files.

gate.drl 16 Completes the functionality and logic of Gates.

instance.drl 12 Creates the default Operations and Conditions for Domain Iter-

ators.

login-handler.drl 60 Secures Scopes based on Login Handlers and Access Control

Handlers.

new-instance.drl 4 Rules relating to Domain Iterators.

operations.drl 6 Creates default Operations for Values, and their contents.

paginate.drl 19 Creates interface elements to paginate across many Domain It-

erator results.

sessions.drl 2 Creates the ‘onInit’ Event for Sessions.

set-wires.drl 34 Completes the functionality of Set Wires.

sync-wires.drl 21 Completes the functionality of Sync Wires.

users.drl 22 Completes the functionality of Roles when connected to Login

Handlers or Access Control Handlers.

validate.drl 4 Rules related to runtime input validation, including type check-

ing.

visible.drl 7 Creates the default Events and Conditions of Visible Things.

Table G.1: Summary of the rules used for model completion on IAML model instances
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Platform-Specific Model Reference

As described earlier in Section 7.6.4, the platform-specific configuration is provided as a set of

key/value pairs to the generator. A summary of these properties are provided here in Table H.1.
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Variable Description

config_runtime A file reference to the location of the server-side libraries of the

Runtime Library component.

config_web A file reference to the location of the client-side libraries of the

Runtime Library component.

debug If set to true, debugging information will be rendered as part of

the generated code.

email_handler The handler used to send Emails. Only two values are supported:

phpmailer and file.

email_handler_phpmailer_include For e-mails handled by phpmailer, a file reference to the loca-

tion of the PHPMailer libraries.

email_handler_file_destination For e-mails handled by file, a file reference to where sent e-

mails will be output.

map_handler The handler used to render Maps. Only two values are sup-

ported: googlemaps and mock.

google_maps_api_key For maps rendered using googlemaps, the Google Maps API

requires an API key to be provided.

proxy_host If set, this proxy host will be used when accessing remote data.

proxy_port If set, this proxy port will be used when accessing remote data.

proxy_userpass If set, this proxy username and password will be used when ac-

cessing remote data.

Table H.1: Description of platform-specific configuration properties
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Language-specific Metrics of the Ticket

2.0 Implementations

As discussed earlier in Section 8.3, the Ticket 2.0 benchmarking application was implemented using

both the Symfony framework and the IAML language, allowing for a comparison of the two imple-

mentations in terms of a set of system metrics. In this appendix, the full set of metrics will be pro-

vided, both in terms of the programming languages used, and the different types of effort expended.

The language-specific metrics were calculated using the Cloc code analysis tool1.

In Table I.1, the metrics of the Symfony-based implementation of Ticket 2.0 called Ticketsf are

provided. The implementation of Ticketsf required manual implementation within five languages,

including server-side logic in PHP; client-side logic in Javascript; and configuration data in YAML.

The YAML configuration data was then used to generate a significant portion of the generated web

application, particularly in terms of XML. This generated application could then be integrated with

the Symfony runtime framework in order to provide the final application.

In Table I.2, the metrics of the IAML-based implementation of Ticket 2.0 called Ticketiaml are

provided. The implementation of Ticketiaml required the manual implementation of a single IAML

model instance, a custom CSS stylesheet, and a number of templates used for e-mails and navigation.

Through the model completion process, the IAML model instance was then transformed into the in-

tended model, and this intended model was then transformed into a significant portion of the generated

web application. This generated application could then be integrated with the IAML runtime frame-

work, as discussed earlier in Section 7.6.3 as the Runtime Library component, in order to provide the

final application.

TODO Should DOS Batch scripts count as a programming technology? Or if they are ignored,

something should be mentioned here.

1The Cloc code analysis tool is provided under the GNU General Public License, and is available online at

http://cloc.sourceforge.net/.

http://cloc.sourceforge.net/
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Number of Files

Language Manual Generated Runtime Total

PHP 26 38 2,023 2,087

XML 0 0 68 68

DTD 0 0 7 7

YAML 16 0 96 112

CSS 1 0 5 6

XSD 0 0 2 2

XSLT 0 0 1 1

Javascript 2 0 3 5

SQL 0 1 1 2

Total 45 39 2,206 2,290

Lines of Code

Language Manual Generated Runtime Total

PHP 570 3,971 155,036 159,577

XML 0 0 6,384 6,384

DTD 0 0 3,535 3,535

YAML 194 0 1,637 1,831

CSS 192 0 699 891

XSD 0 0 346 346

XSLT 0 0 187 187

Javascript 54 0 102 156

SQL 0 58 27 85

Total 1,010 4,029 167,953 172,992

Table I.1: File-based metrics of the development of Ticketsf-mini
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Number of Files

Language Manual Generated Runtime Total

PHP 2 568 67 637

IAML 1 1 0 2

XML 0 1 1 2

CSS 1 0 2 3

Javascript 0 1 9 10

HTML 0 1 8 9

SQL 3 0 0 3

Total 7 572 87 666

Lines of Code

Language Manual Generated Runtime Total

PHP 53 75,824 6,877 82,754

IAML 321 4,212 0 4,533

XML 0 10 50 60

CSS 179 0 183 362

Javascript 0 1,606 6,199 7,805

HTML 0 47 197 244

SQL 53 0 0 53

Total 606 81,699 13,506 95,811

Table I.2: File-based metrics of the development of Ticketiaml
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Ticket 2.0 in IAML

In this appendix, the partial implementation “Ticketiaml” of the Ticket 2.0 benchmarking application

[322] will be presented. This implementation will be provided here in both a visual representation

according to the visual syntax of IAML model instances as described earlier in Section 7.4, and in an

XMI-serialised format.

J.1 Exported Graphical Model Instance

The root Internet Application of Ticketiaml defines the EXSD Data Types used in the application;

the definitions of the domain-specific Roles and Domain Types of the application; and the Sessions

and Frames used in the application.
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InternetApplication: ’Ticket 2.0’

xsd:boolean

: EXSDDataType

xsd:integer

: EXSDDataType

xsd:string

: EXSDDataType

builtin:iamlAddress

: EXSDDataType

builtin:iamlDateTime

: EXSDDataType

builtin:iamlEmail

: EXSDDataType

builtin:iamlOpenIDURL

: EXSDDataType

builtin:iamlString

: EXSDDataType

builtin:iamlURL

: EXSDDataType

named_user

: Role

admin

: Role

manager

: Role

User

: Role

Event

: DomainType

Ticket

: DomainType

users.db (named user)

: DomainSource

Type: RELATIONAL_DB

users.db (manager)

: DomainSource

Type: RELATIONAL_DB

users.db (admin)

: DomainSource

Type: RELATIONAL_DB

users.db (user)

: DomainSource

Type: RELATIONAL_DB

events.db

: DomainSource

Type: RELATIONAL_DB

tickets.db

: DomainSource

Type: RELATIONAL_DB

Home

: Frame

Container: Ticket 2.0

Signup Session

: Session

User Session

: Session

Session Login Handler login

: Session

Browse Events

: Frame

Container: Ticket 2.0

View Event

: Frame

Container: Ticket 2.0

New Events

: Frame

Container: Ticket 2.0

Manager Session

: Session

save

: BuiltinOperation

Container: selected event

navigate

: ECARule

: ExtendsEdge

: ExtendsEdge

: SchemaEdge

: ExtendsEdge

: SchemaEdge

: SchemaEdge

: SchemaEdge

: SchemaEdge

: SchemaEdge
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J.1.1 Types

Ticketiaml defines four Roles; however, only the named_user Role specifies additional Domain At-

tributes. Through model completion, the User Role is automatically populated with email and pass-

word Domain Attributes, as discussed in Section ??.

InternetApplication: ’Ticket 2.0’ > Role: ’named user’

name

: DomainAttribute

Type: xsd:string

Container: named_user

id

: DomainAttribute

Type: xsd:integer

Container: named_user

InternetApplication: ’Ticket 2.0’ > DomainType: ’Event’

venue

: DomainAttribute

Type: builtin:iamlAddress

Container: Event

title

: DomainAttribute

Type: xsd:string

Container: Event

description

: DomainAttribute

Type: xsd:string

Container: Event

created

: DomainAttribute

Type: builtin:iamlDateTime

Container: Event

updated

: DomainAttribute

Type: builtin:iamlDateTime

Container: Event

tickets_left

: DomainAttribute

Type: xsd:integer

Container: Event

event_date

: DomainAttribute

Type: builtin:iamlDateTime

Container: Event

id

: DomainAttribute

Type: xsd:integer

Container: Event

InternetApplication: ’Ticket 2.0’ > DomainType: ’Ticket’

user_id

: DomainAttribute

Type: xsd:integer

Container: Ticket

event_id

: DomainAttribute

Type: xsd:integer

Container: Ticket
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J.1.2 Signup Session

The signup session is a Session that allows a user to create a new user account. If the signup process

was not wrapped within a Session, then other users could hijack the user data entered in by another

user. The signup process also specifies that when a new user account is successfully created (through

the Builtin Operation save), a new Email will also be sent to the new user.

InternetApplication: ’Ticket 2.0’ > Session: ’Signup Session’

Signup

: Frame

Container: Signup Session

Email Sending Failed

: Frame

Container: Signup Session

onFailure

onFailure

: Event

Container: Signup Email
navigate

: ECARule
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... > Session: ’Signup Session’ > Frame: ’Signup’

Signup Form

: InputForm

Container: Signup

Create Account

: Button

Container: Signup

Signup Email

: Email

new user instance

: DomainIterator

new

limit: 1

autosave: false

users.db (named user)

: DomainSource

Type: RELATIONAL_DB

save

: BuiltinOperation

Container: new user instance

hide

: BuiltinOperation

Container: Signup Form

values

successful signup message

: Value

Type: Any

Container: Signup

set

: SetWire

sync

: SyncWire

: SelectEdge

onClick

: ECARule

click

: ECARule

... > Frame: ’Signup’ > InputForm: ’Signup Form’

hide

: BuiltinOperation

Container: Signup Form

email

: InputTextField

Type: builtin:iamlEmail

Container: Signup Form

name

: InputTextField

Type: xsd:string

Container: Signup Form

Create Account

: Button

Container: Signup

<email address>

: Label

Type: builtin:iamlEmail

Container: Email Sending Failed

values

to

: Value

Type: builtin:iamlEmail

Container: Signup Email

values

toName

: Value

Type: Any

Container: Signup Email

click

: ECARule

set

: SetWire

set

: SetWire

set

: SetWire
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... > Frame: ’Signup’ > DomainIterator: ’new user instance’

save

: BuiltinOperation

Container: new user instance

login

: Frame

Container: Session Login Handler login

send

: BuiltinOperation

Container: Signup Email

values

successful signup message

: Value

Type: Any

Container: Signup

run

: ECARule

run

: ECARule

message

: Parameter
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... > Frame: ’Signup’ > Email: ’Signup Email’

send

: BuiltinOperation

Container: Signup Email

values

to

: Value

Type: builtin:iamlEmail

Container: Signup Email

values

toName

: Value

Type: Any

Container: Signup Email

onFailure

onFailure

: Event

Container: Signup Email

save

: BuiltinOperation

Container: new user instance

email

: InputTextField

Type: builtin:iamlEmail

Container: Signup Form

name

: InputTextField

Type: xsd:string

Container: Signup Form

Email Sending Failed

: Frame

Container: Signup Session

run

: ECARule

set

: SetWire

set

: SetWire

navigate

: ECARule

... > Session: ’Signup Session’ > Frame: ’Email Sending Failed’

label1

: Label

Type: Any

Container: Email Sending Failed

label3

: Label

Type: Any

Container: Email Sending Failed

<email address>

: Label

Type: builtin:iamlEmail

Container: Email Sending Failed

email

: InputTextField

Type: builtin:iamlEmail

Container: Signup Form
set

: SetWire
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J.1.3 User Session

The user session is a Session that allows a registered user on the site to login, logout, and interact

with their user-specific details. Presently this only includes the your tickets and view ticket Frames,

allowing the user to view details of purchased tickets. This Session includes a Domain Iterator named

“current instance”, allowing the application to gain the user-specific profile details of the currently

logged-in user.

This session is protected by both a Login Handler and a Access Control Handler; the Login

Handler ensures that a User has logged on, and the Access Control Handler ensures that the User also

possesses the named_user Role.

InternetApplication: ’Ticket 2.0’ > Session: ’User Session’

Login

: Frame

Container: User Session

logout

: Frame

Container: User Session

Invalid Credentials

: Frame

Container: User Session

Your Tickets

: Frame

Container: User Session

View Ticket

: Frame

Container: User Session

Session Login Handler

: LoginHandler

Type: <...> current instance

: DomainIterator

<...>

limit: 1

autosave: false

Require Named User

: AccessControlHandler

entryGate

require manager instance

: Gate

Container: Manager Session

users.db (named user)

: DomainSource

Type: RELATIONAL_DB

named_user

: Role

User

: Role

fail

: ECARule

: SelectEdge

: RequiresEdge

required

: Parameter
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... > Session: ’User Session’ > Frame: ’Your Tickets’

Your Ticket List

: IteratorList

Container: Your Tickets

ticket iterator

: DomainIterator

user_id = :id

limit: 5

autosave: false

id

: DomainAttributeInstance

Type: xsd:integer

Container: instance

tickets.db

: DomainSource

Type: RELATIONAL_DB

View Ticket

: Frame

Container: User Session

set

: SetWire

id

: Parameter

: SelectEdge

detail

: DetailWire

... > Session: ’User Session’ > Frame: ’View Ticket’

View Ticket

: InputForm

Container: View Ticket

... > Frame: ’View Ticket’ > InputForm: ’View Ticket’

event_id

: Label

Type: xsd:integer

Container: View Ticket

View Event

: Button

Container: View Ticket

View Event

: Frame

Container: Ticket 2.0onClick

: ECARule

id

: Parameter
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... > Session: ’User Session’ > DomainIterator: ’current instance’

not empty

: ActivityPredicate

Container: current instance

instance

: DomainInstance

... > DomainIterator: ’current instance’ > DomainInstance: ’instance’

id

: DomainAttributeInstance

Type: xsd:integer

Container: instance

id

: DomainAttribute

Type: xsd:integer

Container: named_user

: ExtendsEdge



J.1 Exported Graphical Model Instance 333

J.1.4 Manager Session

Similarly to the user session, the manager session is a Session that allows a registered manager to

login, logout, and modify events listed in the application.

This session is protected by an entry Gate that ensures that the current user is an instance of a

manager Role; this design is an alternative to the Access Control Handler and Login Handler pattern

used in the user session, and assumes that the user has already logged in. If the user has not logged

in, then the Login Handler protecting the user session Session of the Invalid Credentials Frame will

handle this login process.

InternetApplication: ’Ticket 2.0’ > Session: ’Manager Session’

logout

: Frame

Container: Manager Session

Login

: Frame

Container: Manager Session

Create New Event

: Frame

Container: Manager Session

All Events

: Frame

Container: Manager Session

Edit Event

: Frame

Container: Manager Session

current instance

: DomainIterator

named_user.id = :id

limit: 1

autosave: false

entryGate

require manager instance

: Gate

Container: Manager Session

Invalid Credentials

: Frame

Container: User Session

not empty

: ActivityPredicate

Container: current instance

edit

: Button

Container: All Events

id

: DomainAttributeInstance

Type: xsd:integer

Container: instance

users.db (manager)

: DomainSource

Type: RELATIONAL_DB

fail

: ECARule

condition

: SimpleCondition

onClick

: ECARule

id

: Parameter

: SelectEdge
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... > Session: ’Manager Session’ > Frame: ’Create New Event’

New Event

: InputForm

Container: Create New Event

new event

: DomainIterator

new

limit: 1

autosave: false

events.db

: DomainSource

Type: RELATIONAL_DB

sync

: SyncWire

: SelectEdge

... > Frame: ’Create New Event’ > InputForm: ’New Event’

Save

: Button

Container: New Event

save

: BuiltinOperation

Container: new eventonClick

: ECARule

... > Frame: ’Create New Event’ > DomainIterator: ’new event’

save

: BuiltinOperation

Container: new event

new

: BuiltinOperation

Container: new eventrun

: ECARule

... > Session: ’Manager Session’ > Frame: ’All Events’

All Events

: IteratorList

Container: All Events

all events iterator

: DomainIterator

any

limit: 5

autosave: false

events.db

: DomainSource

Type: RELATIONAL_DB

set

: SetWire

: SelectEdge
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... > Frame: ’All Events’ > IteratorList: ’All Events’

id

: Label

Type: Any

Container: All Events

edit

: Button

Container: All Events

Edit Event

: Frame

Container: Manager SessiononClick

: ECARule

id

: Parameter

... > Session: ’Manager Session’ > Frame: ’Edit Event’

onAccess

onAccess

: Event

Container: Edit Event

set current id

: BuiltinOperation

Container: Edit Event ����es
current id

: Value

Type: xsd:integer

Container: Edit Event

Edit Event

: InputForm

Container: Edit Event

id

: QueryParameter

selected event

: DomainIterator

id = :id

limit: 1

autosave: false

events.db

: DomainSource

Type: RELATIONAL_DB

run

: ECARule

id

: Parameter

id

: Parameter

sync

: SyncWire

: SelectEdge
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... > Frame: ’Edit Event’ > InputForm: ’Edit Event’

Save

: Button

Container: Edit Event

save

: BuiltinOperation

Container: selected eventonClick

: ECARule

... > Frame: ’Edit Event’ > DomainIterator: ’selected event’

save

: BuiltinOperation

Container: selected event

View Event

: Frame

Container: Ticket 2.0

values

current id

: Value

Type: xsd:integer

Container: Edit Event

navigate

: ECARule

id

: Parameter

... > Session: ’Manager Session’ > DomainIterator: ’current instance’

not empty

: ActivityPredicate

Container: current instance
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J.1.5 Login Handler Session

Finally, the login handler session Session deals with the login and logout of Users within the web

application. By default, this session is automatically generated through model completion, as discussed

in Section ??.

Ticketiaml extends these default conventions to add an additional Label, message, which allows a

message to be displayed on the login Frame. This message is provided as a Parameter as in the new

user instance Domain Iterator; the message is subsequently available as a Query Parameter within

the login Frame. The label itself is initialised or hidden through an Activity Operation.

InternetApplication: ’Ticket 2.0’ > Session: ’Session Login Handler login’

login

: Frame

Container: Session Login Handler login

save

: BuiltinOperation

Container: new user instance

values

successful signup message

: Value

Type: Any

Container: Signup

run

: ECARule

message

: Parameter

... > Session: ’Session Login Handler login’ > Frame: ’login’

message

: Label

Type: Any

Container: login

message

: QueryParameter
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... > Frame: ’login’ > Label: ’message’

onAccess

onAccess

: Event

Container: message

initialise or hide message label

: ActivityOperation

Container: message

hide

: BuiltinOperation

Container: message

show

: BuiltinOperation

Container: message

fieldValue

fieldValue

: Value

Type: Any

Container: message

message

: QueryParameter

run

: ECARule

message

: Parameter

... > Label: ’message’ > ActivityOperation: ’initialise or hide message label’

: StartNode

empty?

: DecisionNode

: FinishNode

set value

: SetNode

: ExternalValue

call show

: OperationCallNode

call hide

: OperationCallNode

message

: ActivityParameter

Type: Any

show

: BuiltinOperation

Container: message

hide

: BuiltinOperation

Container: message

<...>
: ExecutionEdge

n

: ExecutionEdge

y

: ExecutionEdge

: DataFlowEdge

<...>

: ExecutionEdge

<...>

: ExecutionEdge

<...>: ExecutionEdge
: DataFlowEdge

: DataFlowEdge

run

: ECARule

run

: ECARule
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J.1.6 Root Frames

There are a number of public Frames that should be accessible to all users, regardless of whether they

are presently logged in. These Frames are placed directly in the root Internet Application, and include

the New Events RSS feed and Browse Events Frames.

InternetApplication: ’Ticket 2.0’ > Frame: ’New Events’

Feed Item

: InputForm

Container: New Events

new events

: DomainIterator

<...>

limit: 5

autosave: false

events.db

: DomainSource

Type: RELATIONAL_DB

set

: SetWire

: SelectEdge

... > Frame: ’New Events’ > InputForm: ’Feed Item’

link

: Button

Container: Feed Item

id

: Label

Type: xsd:integer

Container: Feed Item

View Event

: Frame

Container: Ticket 2.0onClick

: ECARule

id

: Parameter
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InternetApplication: ’Ticket 2.0’ > Frame: ’Browse Events’

events list

: IteratorList

Container: Browse Events

Event Search

: InputTextField

Type: Any

Container: Browse Events

Events Map

: Map

Container: Browse Events

list events iterator

: DomainIterator

(matches(title, :query) or matches(description, :query) or matches(venue, :query)) and event_date > now()

limit: 5

autosave: false

events ���
: DomainSource

Type: RELATIONAL_DB

View Event

: Frame

Container: Ticket 2.0

venue

: Label

Type: builtin:iamlAddress

Container: events list

set

: SetWire

query

: Parameter
: SelectEdge

detail

: DetailWire

set

: SetWire

... > Frame: ’Browse Events’ > IteratorList: ’events list’

venue

: Label

Type: builtin:iamlAddress

Container: events list

title

: Label

Type: Any

Container: events list

link

: Button

Container: events list

event_date

: Label

Type: Any

Container: events list

tickets_left

: Label

Type: Any

Container: events list

Events Map

: Map

Container: Browse Eventsset

: SetWire
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InternetApplication: ’Ticket 2.0’ > Frame: ’View Event’

View Event

: InputForm

Container: View Event

Event Map

: MapPoint

Container: View Event

venue

: Label

Type: xsd:string

Container: View Event
set

: SetWire

... > Frame: ’View Event’ > InputForm: ’View Event’

title

: Label

Type: xsd:string

Container: View Event

description

: Label

Type: xsd:string

Container: View Event

venue

: Label

Type: xsd:string

Container: View Event

event_date

: Label

Type: builtin:iamlDateTime

Container: View Event

tickets_left

: Label

Type: xsd:integer

Container: View Event

Event Map

: MapPoint

Container: View Eventset

: SetWire
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J.2 XMI-Serialised Model Instance

<?xml version="1.0" encoding="UTF-8"?>

<iaml:InternetApplication xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:iaml="http://openiaml.

org/model0.5" xmlns:iaml.domain="http://openiaml.org/model/domain"

xmlns:iaml.messaging="http://openiaml.org/model/messaging" xmlns:iaml.operations="

http://openiaml.org/model/operations" xmlns:iaml.scopes="http://openiaml.org/model

/scopes" xmlns:iaml.users="http://openiaml.org/model/users" xmlns:iaml.visual="htt

p://openiaml.org/model/visual" xmlns:iaml.wires="http://openiaml.org/model/wires"

id="root" name="Ticket 2.0">

<scopes xsi:type="iaml.visual:Frame" id="index" name="Home"/>

<scopes xsi:type="iaml.scopes:Session" id="session_signup" name="Signup Session"

>

<scopes xsi:type="iaml.visual:Frame" id="signup" name="Signup">

<values id="value1" name="successful signup message" outParameterEdges="para

meter1" defaultValue="Your account has been created, you may now login.">

<parameterEdges id="parameter1" name="message" parameterValue="value1"

parameterTerm="eca4"/>

</values>

<messages xsi:type="iaml.messaging:Email" id="email_signup" name="Signup Ema

il" inWires="set1" subject="New account created" from="ticket20@openiaml.org"

fromName="Ticket 2.0">

<operations xsi:type="iaml:BuiltinOperation" rules="eca2" id="builtinopera

tion1" name="send"/>

<values id="signup_email_to" name="to" type="builtin_iamlEmail" inWires="s

et3"/>

<values id="signup_email_to_name" name="toName" inWires="set4"/>

<onFailure id="signup_email_onFailure" name="onFailure" listeners="eca1">

<ecaRules id="eca1" name="navigate" trigger="signup_email_onFailure"

target="signup_email_failed"/>

</onFailure>

</messages>

<iterators id="iterator1" name="new user instance" outWires="sync1 set1"

query="new" outSelects="edge1">

<wires xsi:type="iaml.wires:SyncWire" id="sync1" name="sync" from="iterato

r1" to="form1"/>

<wires xsi:type="iaml.wires:SetWire" id="set1" name="set" from="iterator1"

to="email_signup"/>

<selectEdges id="edge1" from="iterator1" to="named_users_db"/>

<operations xsi:type="iaml:BuiltinOperation" rules="eca3" id="signup_user_

save" name="save" listeners="eca4 eca2">

<ecaRules id="eca2" name="run" trigger="signup_user_save" target="builti

noperation1" priority="100"/>

</operations>

</iterators>

<children xsi:type="iaml.visual:InputForm" inWires="sync1" id="form1" name="

Signup Form">

<operations xsi:type="iaml:BuiltinOperation" rules="eca5" id="signup_form_

hide" name="hide"/>

<children xsi:type="iaml.visual:InputTextField" outWires="set2 set3" id="s

ignup_email" name="email" type="builtin_iamlEmail">

<wires xsi:type="iaml.wires:SetWire" id="set2" name="set" from="signup_e

mail" to="label1"/>

<wires xsi:type="iaml.wires:SetWire" id="set3" name="set" from="signup_e
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mail" to="signup_email_to"/>

</children>

<children xsi:type="iaml.visual:InputTextField" outWires="set4" id="text1"

name="name" type="xsd_string">

<wires xsi:type="iaml.wires:SetWire" id="set4" name="set" from="text1"

to="signup_email_to_name"/>

</children>

</children>

<children xsi:type="iaml.visual:Button" id="signup_create" name="Create Acco

unt" listeners="eca3 eca5">

<ecaRules id="eca3" name="onClick" trigger="signup_create" target="signup_

user_save" priority="100"/>

<ecaRules id="eca4" inParameterEdges="parameter1" name="run" trigger="sign

up_user_save" target="user_login"/>

<ecaRules id="eca5" name="click" trigger="signup_create" target="signup_fo

rm_hide"/>

</children>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="signup_email_failed" name="Email Send

ing Failed" rules="eca1">

<children xsi:type="iaml.visual:Label" id="email_label1" name="label1"

defaultValue="An e-mail could not be sent to the e-mail address" renderOrder="1"/>

<children xsi:type="iaml.visual:Label" id="email_label2" name="label3"

defaultValue="and you may wish to try signing up again." renderOrder="3"/>

<children xsi:type="iaml.visual:Label" inWires="set2" id="label1" name="&lt;

email address>" type="builtin_iamlEmail" renderOrder="2"/>

</scopes>

</scopes>

<scopes xsi:type="iaml.scopes:Session" id="session_user" name="User Session">

<scopes xsi:type="iaml.visual:Frame" id="login" name="Login"/>

<scopes xsi:type="iaml.visual:Frame" id="user_logout" name="logout"/>

<scopes xsi:type="iaml.visual:Frame" id="user_invalid" name="Invalid Credentia

ls" rules="eca11"/>

<scopes xsi:type="iaml.visual:Frame" id="user_tickets" name="Your Tickets">

<iterators id="user_tickets_iterator" name="ticket iterator" outWires="set5"

inParameterEdges="parameter4" query="user_id = :id" limit="5" outSelects="edge2">

<wires xsi:type="iaml.wires:SetWire" id="set5" name="set" from="user_ticke

ts_iterator" to="user_tickets_list"/>

<selectEdges id="edge2" from="user_tickets_iterator" to="tickets_db"/>

</iterators>

<children xsi:type="iaml.visual:IteratorList" outWires="detail1" inWires="se

t5" id="user_tickets_list" name="Your Ticket List">

<wires xsi:type="iaml.wires:DetailWire" id="detail1" name="detail" from="u

ser_tickets_list" to="view_ticket"/>

<overriddenNames>user_id</overriddenNames>

</children>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="view_ticket" name="View Ticket"

inWires="detail1">

<children xsi:type="iaml.visual:InputForm" id="form2" name="View Ticket">

<overriddenNames>user_id</overriddenNames>

<children xsi:type="iaml.visual:Label" id="label2" name="event_id"

outParameterEdges="parameter2" type="xsd_integer">

<parameterEdges id="parameter2" name="id" parameterValue="label2"

parameterTerm="eca6"/>
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</children>

<children xsi:type="iaml.visual:Button" id="button1" name="View Event"

renderOrder="100" listeners="eca6">

<ecaRules id="eca6" inParameterEdges="parameter2" name="onClick" trigger

="button1" target="view_event"/>

</children>

</children>

</scopes>

<iterators id="user_iterator" name="current instance" outSelects="edge3">

<selectEdges id="edge3" from="user_iterator" to="named_users_db"/>

<functions xsi:type="iaml.operations:ActivityPredicate" id="user_logged_in"

name="not empty"/>

<currentInstance id="user_instance" name="instance">

<featureInstances xsi:type="iaml.domain:DomainAttributeInstance"

outParameterEdges="parameter3 parameter4" id="ai1" type="xsd_integer"

outExtendsEdges="edge4" name="id">

<parameterEdges id="parameter3" name="id" parameterValue="ai1"

parameterTerm="manager_instance"/>

<parameterEdges id="parameter4" name="id" parameterValue="ai1"

parameterTerm="user_tickets_iterator"/>

<extendsEdges id="edge4" from="ai1" to="named_user_id"/>

</featureInstances>

</currentInstance>

</iterators>

<accessHandlers id="user_ach" name="Require Named User" outRequiresEdges="edge

5">

<requiresEdges id="edge5" from="user_ach" to="role_user"/>

</accessHandlers>

<loginHandlers id="user_login_handler" name="Session Login Handler"

inParameterEdges="parameter12" type="USER"/>

</scopes>

<scopes xsi:type="iaml.scopes:Session" id="session1" name="Session Login Handler

login">

<scopes xsi:type="iaml.visual:Frame" id="user_login" name="login" rules="eca4"

>

<parameters id="qp1" name="message" outParameterEdges="parameter5"

defaultValue="">

<parameterEdges id="parameter5" name="message" parameterValue="qp1"

parameterTerm="eca9"/>

</parameters>

<children xsi:type="iaml.visual:Label" id="login_message" name="message">

<operations xsi:type="iaml.operations:ActivityOperation" rules="eca9" id="

login_message_init" name="initialise or hide message label">

<nodes xsi:type="iaml.operations:StartNode" id="startnode1"

outExecutions="edge10"/>

<nodes xsi:type="iaml.operations:DecisionNode" id="decisionnode1" name="

empty?" outExecutions="edge11 edge12" inExecutions="edge10" inFlows="edge9"/>

<nodes xsi:type="iaml.operations:FinishNode" id="finishnode1"

inExecutions="edge14 edge15"/>

<nodes xsi:type="iaml.operations:SetNode" id="setnode1" name="set value"

outExecutions="edge13" inExecutions="edge11" outFlows="edge8" inFlows="edge7"/>

<nodes xsi:type="iaml.operations:ExternalValue" id="externalvalue1"

inFlows="edge8" value="login_message_value"/>

<nodes xsi:type="iaml.operations:OperationCallNode" id="operationcallnod

e1" outExecutions="edge14" inExecutions="edge13" name="call show" listeners="eca7"
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>

<ecaRules id="eca7" name="run" trigger="operationcallnode1" target="lo

gin_message_show"/>

</nodes>

<nodes xsi:type="iaml.operations:OperationCallNode" id="operationcallnod

e2" outExecutions="edge15" inExecutions="edge12" name="call hide" listeners="eca8"

>

<ecaRules id="eca8" name="run" trigger="operationcallnode2" target="lo

gin_message_hide"/>

</nodes>

<dataEdges id="edge7" from="activityparameter1" to="setnode1"/>

<dataEdges id="edge8" from="setnode1" to="externalvalue1"/>

<dataEdges id="edge9" from="activityparameter1" to="decisionnode1"/>

<executionEdges id="edge10" from="startnode1" to="decisionnode1"/>

<executionEdges id="edge11" name="n" from="decisionnode1" to="setnode1"/

>

<executionEdges id="edge12" name="y" from="decisionnode1" to="operationc

allnode2"/>

<executionEdges id="edge13" from="setnode1" to="operationcallnode1"/>

<executionEdges id="edge14" from="operationcallnode1" to="finishnode1"/>

<executionEdges id="edge15" from="operationcallnode2" to="finishnode1"/>

<parameters id="activityparameter1" name="message" outFlows="edge7 edge9

"/>

</operations>

<operations xsi:type="iaml:BuiltinOperation" rules="eca8" id="login_messag

e_hide" name="hide"/>

<operations xsi:type="iaml:BuiltinOperation" rules="eca7" id="login_messag

e_show" name="show"/>

<onAccess id="login_message_onAccess" name="onAccess" listeners="eca9">

<ecaRules id="eca9" inParameterEdges="parameter5" name="run" trigger="lo

gin_message_onAccess" target="login_message_init"/>

</onAccess>

<fieldValue id="login_message_value" name="fieldValue"/>

</children>

</scopes>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="all_events" name="Browse Events">

<iterators id="all_events_iterator" name="list events iterator" outWires="set6

" inParameterEdges="parameter6" query="(matches(title, :query) or matches(descript

ion, :query) or matches(venue, :query)) and event_date > now()" limit="5"

outSelects="edge16">

<wires xsi:type="iaml.wires:DetailWire" id="detail2" name="detail" from="all

_events_list" to="view_event"/>

<wires xsi:type="iaml.wires:SetWire" id="set6" name="set" from="all_events_i

terator" to="all_events_list"/>

<selectEdges id="edge16" from="all_events_iterator" to="events_db"/>

</iterators>

<children xsi:type="iaml.visual:IteratorList" outWires="detail2" inWires="set6

" id="all_events_list" name="events list" renderOrder="100">

<overriddenNames>created</overriddenNames>

<overriddenNames>updated</overriddenNames>

<overriddenNames>description</overriddenNames>

<children xsi:type="iaml.visual:Label" outWires="set7" id="all_events_venue"

name="venue" type="builtin_iamlAddress" renderOrder="30">

<wires xsi:type="iaml.wires:SetWire" id="set7" name="set" from="all_events
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_venue" to="all_events_map"/>

</children>

<children xsi:type="iaml.visual:Label" id="label3" name="title" renderOrder=

"20"/>

<children xsi:type="iaml.visual:Button" id="button2" name="link" renderOrder

="10"/>

<children xsi:type="iaml.visual:Label" id="label4" name="event_date"

renderOrder="40"/>

<children xsi:type="iaml.visual:Label" id="label5" name="tickets_left"

renderOrder="50"/>

</children>

<children xsi:type="iaml.visual:InputTextField" id="all_events_search" name="E

vent Search" outParameterEdges="parameter6">

<parameterEdges id="parameter6" name="query" parameterValue="all_events_sear

ch" parameterTerm="all_events_iterator"/>

</children>

<children xsi:type="iaml.visual:Map" inWires="set7" id="all_events_map" name="

Events Map"/>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="view_event" name="View Event" inWires="

detail2" rules="eca10 eca16 eca6">

<children xsi:type="iaml.visual:InputForm" id="view_event_form" name="View Eve

nt">

<overriddenNames>created</overriddenNames>

<overriddenNames>updated</overriddenNames>

<overriddenNames>id</overriddenNames>

<children xsi:type="iaml.visual:Label" id="view_event_title" name="title"

type="xsd_string"/>

<children xsi:type="iaml.visual:Label" id="view_event_description" name="des

cription" type="xsd_string"/>

<children xsi:type="iaml.visual:Label" outWires="set8" id="view_event_venue"

name="venue" type="xsd_string">

<wires xsi:type="iaml.wires:SetWire" id="set8" name="set" from="view_event

_venue" to="view_event_map_point"/>

</children>

<children xsi:type="iaml.visual:Label" id="view_event_date" name="event_date

" type="builtin_iamlDateTime"/>

<children xsi:type="iaml.visual:Label" id="view_event_tickets" name="tickets

_left" type="xsd_integer"/>

</children>

<children xsi:type="iaml.visual:MapPoint" inWires="set8" id="view_event_map_po

int" name="Event Map"/>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="events_rss" name="New Events" render="R

SS20">

<iterators id="events_rss_iterator" name="new events" outWires="set9" limit="5

" orderBy="attribute3" orderAscending="false" outSelects="edge17">

<wires xsi:type="iaml.wires:SetWire" id="set9" name="set" from="events_rss_i

terator" to="events_rss_item"/>

<selectEdges id="edge17" from="events_rss_iterator" to="events_db"/>

</iterators>

<children xsi:type="iaml.visual:InputForm" inWires="set9" id="events_rss_item"

name="Feed Item">

<children xsi:type="iaml.visual:Button" id="events_rss_link" name="link"

listeners="eca10">
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<ecaRules id="eca10" inParameterEdges="parameter7" name="onClick" trigger=

"events_rss_link" target="view_event"/>

</children>

<children xsi:type="iaml.visual:Label" id="events_rss_id" name="id"

outParameterEdges="parameter7" type="xsd_integer">

<parameterEdges id="parameter7" name="id" parameterValue="events_rss_id"

parameterTerm="eca10"/>

</children>

</children>

</scopes>

<scopes xsi:type="iaml.scopes:Session" id="session_manager" name="Manager Sessio

n">

<entryGate id="session_manager_gate" name="require manager instance"

conditions="condition1" listeners="eca11">

<ecaRules id="eca11" name="fail" trigger="session_manager_gate" target="user

_invalid"/>

</entryGate>

<scopes xsi:type="iaml.visual:Frame" id="manager_logout" name="logout"/>

<scopes xsi:type="iaml.visual:Frame" id="manager_login" generatedRule="" name=

"Login"/>

<scopes xsi:type="iaml.visual:Frame" id="event_new" name="Create New Event">

<iterators id="event_new_iterator" name="new event" inWires="sync2" query="n

ew" outSelects="edge18">

<selectEdges id="edge18" from="event_new_iterator" to="events_db"/>

<operations xsi:type="iaml:BuiltinOperation" rules="eca13" id="event_new_s

ave" name="save" listeners="eca12">

<ecaRules id="eca12" name="run" trigger="event_new_save" target="builtin

operation2"/>

</operations>

<operations xsi:type="iaml:BuiltinOperation" rules="eca12" id="builtinoper

ation2" name="new"/>

</iterators>

<children xsi:type="iaml.visual:InputForm" outWires="sync2" id="event_new_fo

rm" name="New Event">

<wires xsi:type="iaml.wires:SyncWire" id="sync2" name="sync" from="event_n

ew_form" to="event_new_iterator"/>

<children xsi:type="iaml.visual:Button" id="event_new_save_button" name="S

ave" renderOrder="100" listeners="eca13">

<ecaRules id="eca13" name="onClick" trigger="event_new_save_button"

target="event_new_save"/>

</children>

</children>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="events_list" name="All Events">

<iterators id="iterator2" name="all events iterator" outWires="set10" query=

"any" limit="5" orderBy="attribute6" orderAscending="false" outSelects="edge19">

<wires xsi:type="iaml.wires:SetWire" id="set10" name="set" from="iterator2

" to="all_events_list2"/>

<selectEdges id="edge19" from="iterator2" to="events_db"/>

</iterators>

<children xsi:type="iaml.visual:IteratorList" inWires="set10" id="all_events

_list2" name="All Events">

<overriddenNames>created</overriddenNames>

<overriddenNames>updated</overriddenNames>

<overriddenNames>description</overriddenNames>



348 J Ticket 2.0 in IAML

<children xsi:type="iaml.visual:Label" id="all_events_event_id" name="id"

outParameterEdges="parameter8">

<parameterEdges id="parameter8" name="id" parameterValue="all_events_eve

nt_id" parameterTerm="eca14"/>

</children>

<children xsi:type="iaml.visual:Button" id="all_events_edit" name="edit"

listeners="eca14">

<ecaRules id="eca14" inParameterEdges="parameter8" name="onClick"

trigger="all_events_edit" target="event_edit"/>

</children>

</children>

</scopes>

<scopes xsi:type="iaml.visual:Frame" id="event_edit" name="Edit Event" rules="

eca14">

<operations xsi:type="iaml:BuiltinOperation" rules="eca15" id="builtinoperat

ion3" name="set current id"/>

<onAccess id="event1" name="onAccess" listeners="eca15">

<ecaRules id="eca15" inParameterEdges="parameter11" name="run" trigger="ev

ent1" target="builtinoperation3"/>

</onAccess>

<values id="value2" name="current id" type="xsd_integer" outParameterEdges="

parameter10 parameter9" defaultValue="0">

<parameterEdges id="parameter9" name="id" parameterValue="value2"

parameterTerm="eca16"/>

</values>

<parameters id="qp2" name="id" outParameterEdges="parameter11">

<parameterEdges id="parameter10" name="id" parameterValue="value2"

parameterTerm="iterator3"/>

<parameterEdges id="parameter11" name="id" parameterValue="qp2"

parameterTerm="eca15"/>

</parameters>

<iterators id="iterator3" name="selected event" outWires="sync3"

inParameterEdges="parameter10" query="id = :id" outSelects="edge20">

<wires xsi:type="iaml.wires:SyncWire" id="sync3" name="sync" from="iterato

r3" to="edit_event_form"/>

<selectEdges id="edge20" from="iterator3" to="events_db"/>

<operations xsi:type="iaml:BuiltinOperation" rules="eca17" id="builtinoper

ation4" name="save" listeners="eca16">

<ecaRules id="eca16" inParameterEdges="parameter9" name="navigate"

trigger="builtinoperation4" target="view_event"/>

</operations>

</iterators>

<children xsi:type="iaml.visual:InputForm" inWires="sync3" id="edit_event_fo

rm" name="Edit Event">

<overriddenNames>id</overriddenNames>

<children xsi:type="iaml.visual:Button" id="edit_event_save" name="Save"

renderOrder="100" listeners="eca17">

<ecaRules id="eca17" name="onClick" trigger="edit_event_save" target="bu

iltinoperation4"/>

</children>

</children>

</scopes>

<iterators id="manager_instance" name="current instance" inParameterEdges="par

ameter3" query="named_user.id = :id" outSelects="edge21">

<selectEdges id="edge21" from="manager_instance" to="source1"/>
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<functions xsi:type="iaml.operations:ActivityPredicate" id="manager_logged_i

n" name="not empty" conditioned="condition1">

<conditionEdges id="condition1" name="condition" function="manager_logged_

in" conditioned="session_manager_gate"/>

</functions>

</iterators>

</scopes>

<types xsi:type="iaml.users:Role" name="named_user" id="role_user"

outExtendsEdges="edge22" inExtendsEdges="edge24" inSchemas="schema1"

inRequiresEdges="edge5">

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="name" eType=

"xsd_string" id="named_user_name"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="id" eType="x

sd_integer" id="named_user_id" inExtendsEdges="edge4" primaryKey="true"/>

<parameterEdges id="parameter12" name="required" parameterValue="role1"

parameterTerm="user_login_handler"/>

<extendsEdges id="edge22" from="role_user" to="role1"/>

</types>

<types xsi:type="iaml.users:Role" name="admin" id="role_admin" outExtendsEdges="

edge23" inSchemas="schema3">

<extendsEdges id="edge23" from="role_admin" to="role_manager"/>

</types>

<types xsi:type="iaml.users:Role" name="manager" id="role_manager"

outExtendsEdges="edge24" inExtendsEdges="edge23" inSchemas="schema2">

<extendsEdges id="edge24" from="role_manager" to="role_user"/>

</types>

<types xsi:type="iaml.users:Role" name="User" id="role1" outParameterEdges="para

meter12" inExtendsEdges="edge22" inSchemas="schema4"/>

<types name="Event" id="type_event" inSchemas="schema5">

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="venue" eType

="builtin_iamlAddress" id="event_venue"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="title" eType

="xsd_string" id="attribute1"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="description"

eType="xsd_string" id="attribute2"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="created"

eType="builtin_iamlDateTime" id="attribute3"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="updated"

eType="builtin_iamlDateTime" id="attribute4"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="tickets_left

" eType="xsd_integer" id="attribute5"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="event_date"

eType="builtin_iamlDateTime" id="attribute6"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="id" eType="x

sd_integer" id="attribute7" primaryKey="true"/>

</types>

<types name="Ticket" id="type1" inSchemas="schema6">

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="user_id"

eType="xsd_integer" id="attribute8"/>

<eStructuralFeatures xsi:type="iaml.domain:DomainAttribute" name="event_id"

eType="xsd_integer" id="attribute9"/>

</types>

<sources id="named_users_db" name="users.db (named user)" file="users.db"

outSchemas="schema1" inSelects="edge1 edge3">

<schemaEdges id="schema1" from="named_users_db" to="role_user"/>
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<schemaEdges id="schema2" from="source1" to="role_manager"/>

<schemaEdges id="schema3" from="source2" to="role_admin"/>

</sources>

<sources id="source1" name="users.db (manager)" file="users.db" outSchemas="sche

ma2" inSelects="edge21"/>

<sources id="source2" name="users.db (admin)" file="users.db" outSchemas="schema

3"/>

<sources id="users_db" name="users.db (user)" file="users.db" outSchemas="schema

4">

<schemaEdges id="schema4" from="users_db" to="role1"/>

</sources>

<sources id="events_db" name="events.db" file="events.db" outSchemas="schema5"

inSelects="edge16 edge17 edge18 edge19 edge20">

<schemaEdges id="schema5" from="events_db" to="type_event"/>

</sources>

<sources id="tickets_db" name="tickets.db" file="tickets.db" outSchemas="schema6

" inSelects="edge2">

<schemaEdges id="schema6" from="tickets_db" to="type1"/>

</sources>

<xsdDataTypes name="xsd:boolean" id="xsd_boolean">

<definition href="platform:/plugin/org.eclipse.xsd/cache/www.w3.org/2001/XMLSc

hema.xsd#//boolean;XSDSimpleTypeDefinition=10"/>

</xsdDataTypes>

<xsdDataTypes name="xsd:integer" id="xsd_integer">

<definition href="platform:/plugin/org.eclipse.xsd/cache/www.w3.org/2001/XMLSc

hema.xsd#//integer;XSDSimpleTypeDefinition=40"/>

</xsdDataTypes>

<xsdDataTypes name="xsd:string" id="xsd_string">

<definition href="platform:/plugin/org.eclipse.xsd/cache/www.w3.org/2001/XMLSc

hema.xsd#//string;XSDSimpleTypeDefinition=9"/>

</xsdDataTypes>

<xsdDataTypes name="builtin:iamlAddress" id="builtin_iamlAddress">

<definition href="platform:/plugin/org.openiaml.model/model/datatypes.xsd#//ia

mlAddress;XSDSimpleTypeDefinition=2"/>

</xsdDataTypes>

<xsdDataTypes name="builtin:iamlDateTime" id="builtin_iamlDateTime">

<definition href="platform:/plugin/org.openiaml.model/model/datatypes.xsd#//ia

mlDateTime;XSDSimpleTypeDefinition=4"/>

</xsdDataTypes>

<xsdDataTypes name="builtin:iamlEmail" id="builtin_iamlEmail">

<definition href="platform:/plugin/org.openiaml.model/model/datatypes.xsd#//ia

mlEmail;XSDSimpleTypeDefinition=3"/>

</xsdDataTypes>

<xsdDataTypes name="builtin:iamlOpenIDURL" id="builtin_iamlOpenIDURL">

<definition href="platform:/plugin/org.openiaml.model/model/datatypes.xsd#//ia

mlOpenIDURL;XSDSimpleTypeDefinition=6"/>

</xsdDataTypes>

<xsdDataTypes name="builtin:iamlString" id="builtin_iamlString">

<definition href="platform:/plugin/org.openiaml.model/model/datatypes.xsd#//ia

mlString;XSDSimpleTypeDefinition=1"/>

</xsdDataTypes>

<xsdDataTypes name="builtin:iamlURL" id="builtin_iamlURL">

<definition href="platform:/plugin/org.openiaml.model/model/datatypes.xsd#//ia

mlURL;XSDSimpleTypeDefinition=5"/>

</xsdDataTypes>



J.2 XMI-Serialised Model Instance 351

</iaml:InternetApplication>





Appendix K

Cognitive Dimensions Evaluation of

IAML

As discussed in Section 4.10.2, the cognitive dimensions framework proposed by Green and Petre

[118] may be used to evaluate the usability of a visual modelling language. In this appendix, the

thirteen dimensions of this framework will be briefly summarised, and evaluated against the visual

representation of IAML (Section 7.4.3). As discussed in Section 8.5.2, the results of this subjec-

tive evaluation broadly suggest that the IAML visual representation satisfies each of these cognitive

dimensions.

Abstraction Gradient

What are the minimum and maximum levels of abstraction? Can fragments be encapsu-

lated?

It appears that this measurement simultaneously discusses the level of abstractions used in a language,

and the depth in which users can – or must – develop their own abstractions. IAML is a language built

exclusively on many different types of abstractions, but this diversity is necessary due to the wide

range of functionality that a RIA possesses. Nevertheless, the abstractions used have been selected

based on existing languages and visual metaphors, as discussed in Chapter 5.

As defined by Green and Petre [118], IAML may be considered somewhat abstraction-tolerant.

The language may be used “as-is” without having to create new abstractions, however there is lim-

ited support for the creation of new abstractions – elements such as Domain Type appear to be the

exception1 .

Closeness of Mapping

What ‘programming games’ need to be learned?

As discussed in Section 5.14, each layer of the hierarchical visual notation of IAML is designed from

an existing visual notation – such as UML class diagrams for domain modelling, or user interface

design for interface modelling. This allows the visual syntax to map closely to the existing metaphors

understood by the intended language users.

1Since IAML is a model-driven language with some support for third-party extensibility, new abstractions may be pro-

vided independently by the developers themselves depending on tool support, as discussed later in Section 9.2.8.
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Consistency

When some of the language has been learnt, how much of the rest can be inferred?

There are three core concepts of IAML visual syntax that need to be understood by a model developer:

hierarchy; event-condition-action rules; and model completion. As discussed in Section 7.4.3, the

IAML visual model adheres to a consistent design based on the information capacities of the syntax

variables, and the standard Eclipse colour palette. The design decisions of the underlying IAML

metamodel also respect consistency, as discussed in Section ??.

Diffuseness/Terseness

How many symbols or graphic entities are required to express a meaning?

As discussed by Green and Petre [118], this measurement is difficult to quantify, as the terseness of

a particular problem depends heavily on its closeness to the problem domain. As each metamodel

element in IAML has a corresponding visual element, the language can be considered to be quite

verbose; however, many of these elements are often only generated through the model completion

process.

Error-proneness

Does the design of the notation induce ‘careless mistakes’?

This dimension is also impacted by the consistency of the syntax and the language. To evaluate this

dimension, four example categories of potential developer errors have been identified and evaluated,

along with proposed techniques to reduce their occurrence.

1. Invalid model instances: A model developer may inadvertently create a model instance that vi-

olates the structural constraints of the metamodel; for example, not providing a Complex Term

with the appropriate Parameters for the given Function. As discussed in Section 7.7.1, prop-

erty verification is evaluated upon every model instance change to combat this, and violations

displayed in realtime.

2. Lack of context: Due to the hierarchical nature of IAML model instances, a model developer

may incorrectly refer to another model element due to a lack of context information of that ele-

ment. For example, a model instance may have two Input Text Fields with the same name. To

combat this, additional visual notations – such as container name, metaclass name, and bread-

crumbing – are provided by the Diagram Extensions component, as discussed in Section 7.4.4.

3. Misuse of model completion: The model completion process occurs independently of the de-

velopment environment, and model developers may not be fully aware of the semantics of the

model completion rules used, causing errors in their designed model instance. Approaches to

reduce these errors include adequate documentation as discussed in Section 7.5.2, and provid-

ing tools to integrate the two environments together as discussed in Section 7.8. Additionally,

since model completion is additive and cannot remove existing elements, there is no risk of a

developer losing their work [324].
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4. Design errors: Finally, a model developer may inadvertently create a model instance which

satisfies the structural constraints of the IAML metamodel, but possesses a design-time flaw

such as infinite redirection. As discussed in Section 7.7.4, recursive constraints and model

checking verification may optionally be used to identify these cases.

Hard Mental Operations

Are there places where the user needs to resort to fingers or pencilled annotation to keep

track of what’s happening?

A “hard mental operation” is defined as a construct that becomes incomprehensible as many are con-

nected together, with no alternative way of designing the operation [118]. In IAML, these problematic

constructs are avoided by using the Composite design pattern [105, pg. 163–173]. For example, a

number of Conditions can be composed into a single Complex Condition; a number of user interface

elements (Visible Things) can be composed into a single wrapped Frame; or a number of Operations

can be composed into Activity Operation. Mental complexity is also reduced by defining a name for

most model elements.

Hidden Dependencies

Is every dependency overtly indicated in both directions? Is the indication perceptual or

only symbolic?

A hidden dependency is defined as “a relationship between two components such that one of them is

dependent on the other, but that the dependency is not fully visible.” By default, hierarchical graphical

editors developed using GMF suffer from this problem, as relationships with other elements are often

not displayed. In response, the GetShortcuts controller was introduced earlier in Section 7.4.4 to

reduce this problem by fully populating all of the relationships of a given element for a given context.

Premature Commitment

Do programmers have to make decisions before they have the information they need?

IAML reduces premature commitment by encoding common design patterns through model comple-

tion, and there are few cardinality limits. Model refactoring tools such as the move into separate model

action can also reduce this concern.

Progressive Evaluation

Can a partially-complete program be executed to obtain feedback on “How am I doing”?

Other than the model verification feedback provided through different verification languages, a model

instance may evaluated by generating the model instance into web application source code. Model

completion also assists in progressive evaluation, as inference can automatically complete much of a

base model. The smallest valid IAML model instance consists of only two elements – a single empty

Frame contained by a root Internet Application.
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Role-expressiveness

Can the reader see how each component of a program relates to the whole?

While IAML is designed according to the three-level viewpoint architecture of the MDA, the language

does not directly integrate with a requirements-based metamodel. Nevertheless, GMF-based graphical

editors support arbitrary notes and file attachments as secondary notation, allowing a developer to

provide additional documentation.

Secondary Notation

Can programmers use layout, colour, or other cues to convey extra meaning, above and

beyond the ‘official’ semantics of the language?

One of the built-in features of a GMF-based graphical editor is that many forms of secondary notation

can be applied to all model elements; a model developer may override any of the colours, lines, fonts or

arrows used for any of the nodes or edges in a given representation. All secondary notation is serialised

in the diagram metamodel (iaml_diagram files), which prevents the underlying model instance from

being polluted with this representation information. The proof-of-concept implementation of IAML

therefore strongly supports this dimension.

Viscosity

How much effort is required to perform a single change?

In terms of the visual representation of IAML model instances, all nodes, edges and labels in a single

view are elastic, which allows the arbitrary relayout and resizing of diagram elements. GMF supports

the automatic relayout of model elements, which can significantly reduce the time necessary to make

a visual change, and also supports reinitialising a diagram from a model instance from scratch. Model

elements can also be cut, copied and pasted between views, providing functionality similar to a textual

editor.

Certain model refactoring operations can still require a significant amount of effort – for exam-

ple, changing the underlying type of an element, or replacing a Single Condition with a Composite

Condition – and future work includes the development of additional model refactoring tools2.

Visibility and Juxtaposability

Is every part of the code simultaneously visible (assuming a large enough display), or is it

at least possible to juxtapose any two parts side-by-side at will? If the code is dispersed,

is it at least possible to know in what order to read it?

Since IAML is designed as a hierarchical metamodel, it is possible to have two independent views

of different parts of a model instance. The GMF framework supports displaying multiple views of a

single model instance simultaneously, permitting good juxtaposability. Other features such as GMF’s

Outline View and the breadcrumbing diagram extension also improve the visibility and context of a

model instance.

2One existing model refactoring tool is the move into separate model action, discussed earlier in Section 7.4.5.
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