
Ph.D. Confirmation Report

A Modelling Language for

Interactive Web Applications

Jevon Wright

Supervisor: Dr Jens Dietrich

Institute of Information Sciences & Technology

Massey University

March 7, 2008

c© Copyright by Jevon Wright 2008

All Rights Reserved

Abstract

Web applications are quickly becoming a significant aspect of software development,

especially with the recent development of interactive, client-side web applications,

frequently identified as part of Web 2.0. Consequently, these new web technologies

are increasing web application complexity and adding new concepts to an already

complicated environment. The use of formal modelling approaches is frequently

expected to improve the reliability, usability and security of web applications, as

well as reducing development costs, promoting openness, standards and platform-

independence, improving maintainability, and advancing the field of code generation.

Despite the existence of a diverse range of web application modelling languages,

no approach has become widely accepted in industry. Some researchers suggest that

the development of new modelling approaches and development processes would ad-

dress these problems. This Ph.D. research aims to develop a platform-independent

modelling language, within the conceptual framework of Model Driven Architec-

ture (MDA) and the Meta Object Facility (MOF) standard, which will reunite the

conceptual gap between these new technologies and their implementation. This

outcome will be empirically validated with a proof-of-concept CASE tool, and com-

pared with existing methods to discuss the expressibility and performance of our

contributions.

In this confirmation report, we will discuss the state of model-driven web devel-

opment and its implications on industry. We will introduce the research aims of this

Ph.D., along with our expected contributions and how we are planning to achieve

them. We will conclude with a summary of our progress and discuss our future

direction.

This is a doctoral confirmation report submitted in part to fulfill the requirements

of progressing to full registration in the Ph.D. programme in Computer Science at

Massey University, Palmerston North, New Zealand. This Ph.D. has been supervised

i

by Dr Jens Dietrich at the Institute of Information Sciences and Technology, soon

to become the School of Engineering and Advanced Technology. My research into

this Ph.D. was supported by the Massey University Doctoral Scholarship.

ii

Contents

Abstract i

1 Introduction 1

2 Research 3

2.1 Research Questions . 3

2.2 Major Contributions . 4

2.3 Research Method . 5

3 State of the Art 7

3.1 Existing Languages . 7

3.1.1 WebML . 7

3.1.2 UWE . 8

3.1.3 UML Extensions . 9

3.1.4 Older Languages . 10

3.1.5 Formal Models . 10

3.1.6 Commercial Approaches . 12

3.2 Frameworks . 12

3.3 Other Literature . 13

3.4 New Functionality . 14

3.5 Our Critical Review . 15

3.6 Summary . 16

4 Enabling Technologies 17

4.1 Models . 17

4.2 Metamodels . 18

4.3 Metamodel Support . 20

iii

4.4 Transformations and Code Generation 21

4.5 Verification . 22

5 Progress 23

5.1 Publications . 23

5.2 Future Direction . 24

5.3 Final Thesis . 26

A Glossary 27

B Interactive Web Applications 29

C Web Application Requirements 31

D Final Thesis Structure 33

iv

List of Figures

2.1 Iterative Development Lifecycle . 6

3.1 Hypertext Model of a simple WebML application 8

3.2 Navigation Structure Model of a simple UWE application 9

3.3 Overview Class Diagram of Conallen’s UML extension 11

3.4 Simultaneously editing a UML model and it’s code in Apollo 12

4.1 Programming languages in MOF 19

4.2 Levels of abstraction in MDA . 19

4.3 The conceptual gap in web development 20

4.4 The GMF Framework Wizard in Eclipse 21

v

Chapter 1

Introduction

The invention of the Internet has ushered in a new era of connectivity and informa-

tion availability. From anywhere in the world, any person with a working Internet

connection and a browsing device – whether it be Personal Computer, TV set, mo-

bile phone or PDA – can instantly browse the information on the Internet. This

has been augmented with the rise of interactive web applications, which provide

rich interfaces for anybody to interact with a diverse range of services, or publish

their own content. Desktop software applications1 are now becoming increasingly

superseded with web-based applications, in part to the lower overall Total Cost of

Ownership [1] of centralised web applications.

Software application development has arguably been improved significantly by

the development of standard modelling languages such as UML [2], providing a clear,

consistent way to document and model software systems. As web applications can

be considered a form of software, it is clear that web application development should

have a similar level of support [3].

Despite claims that the web development industry is experiencing a quality and

methodology crisis [4, 5, 6], surveys [7] show that talk of such a crisis is unfounded,

with most developers following structured in-house methods. However, the use of

formal methodologies is exceedingly rare [7, 8, 4], despite industry expectation that

these methods improve the reliability, usability, security [7] and maintainability [9]

of web applications, and decrease development costs and risks [9].

Web development tends to focus solely on the low-level implementation [9]

1Refer to Glossary in Appendix A for definitions.

1

CHAPTER 1. INTRODUCTION 2

using a diverse range of technologies [3], but at the same time must be accessible

to a diverse range of platforms and devices [3]. It is this conceptual gap between

application requirements and the implementation that needs to be addressed. Some

researchers argue that some level of abstraction in the form of models and tools

will bridge this gap [10, 5], and consequently many approaches have been proposed.

These approaches are either extensions to UML [2] aiming to capitalise on its existing

support and standards [11, 12], or the development of entirely new domain-specific

models [13, 14] which instead aim on expressibility and implementation support.

Despite these attempts, existing solutions are woefully inadequate for modelling

web applications [3]. In particular, solutions lack support for interactivity; cannot

support dynamic content generation; ignore existing standards and frequently have

no implementation support [8]. It is clear that since existing solutions cannot model

web applications, industry will hesitate to use them.

This situation is made worse by the recent rise of new types of user-oriented

Rich Internet Applications (RIAs) [15]. These applications place some computa-

tional requirements on the client-side which cannot be expressed by any existing

web application model [16]. Along with the unique requirements of web applica-

tions [9], there is now a significant gap between any existing methodology and the

implementation of web applications.

It is the task of modelling this conceptual gap between requirements and imple-

mentation details that is the focus of this Ph.D. project.

Chapter 2

Research

This absence of a suitable modelling language or methodology, along with the in-

creasing complexities offered today by user-oriented interactivity in rich web appli-

cations, leads us to our thesis statement:

The development of a new interactive web application metamodel will

allow us to solve the challenges faced in Web Engineering; in partic-

ular, improving the reliability, usability and security of interactive web

applications, and simplifying the development process in industry.

2.1 Research Questions

This thesis statement is naturally broken down into five key questions, which we

aim to address in the course of this Ph.D.:

1. What are the challenges that interactive web applications provide?

2. What issues exist with existing web application modelling languages?

3. Can we develop a modelling language to handle these challenges?

4. How do we prove that such a modelling language provides web application

developers with greater reliability, usability and security?

5. Similarly, how do we prove that such a modelling language improves the

development process, in terms of speed, simplicity and consistency?

3

CHAPTER 2. RESEARCH 4

2.2 Major Contributions

Our answers to these key questions will provide the knowledge on which to develop

such a web application metamodel, leading us to the major expected contributions

of our work:

1. We will identify the range of features and requirements of web applications,

and condense them into some core requirements (Appendix C).

2. We will identify the existing approaches and models available, and investigate

to what extent they can describe these new features, as well as document

their extensibility.

3. We will propose a benchmark web application to allow the evaluation and

comparison between different web engineering approaches.

4. We will propose an interactive web application modelling language, which;

(a) Is expressive enough to describe the interactive, asynchronous update of

web content in web applications; in particular, support for AJAX-based

application designs and Web 2.0 user collaboration.

(b) Is expressive enough to describe the diverse range of possible events on

the web, such as client requests, session lifecycles and scheduled server

events.

(c) Is expressive enough to describe the majority of existing interactive web

applications currently on the web.

(d) Is suitable for round-tripping in development, with the ability to generate

significant executable code from the model, and vice versa.

(e) Is platform-independent and standards-compliant, using existing meta-

models where appropriate.

(f) Fits in with the Model Driven Architecture [17] concept and complies

with the Meta-Object Facility [18] approach.

(g) Can be used for formal verification purposes, with an interface to an

existing model checker such as Alloy [19].

(h) Is open-source and promoted in industry, with a prototype proof-of-

concept CASE tool implementation.

CHAPTER 2. RESEARCH 5

5. We will evaluate our modelling language empirically with existing approaches,

using our benchmark web application, and discuss the suitability and effec-

tiveness of our approach.

2.3 Research Method

Existing modelling approaches have been attempted in the past, ranging from

domain-specific languages [13] to extensions of UML [11], but these approaches

have generally lacked independent support1 in industry [7], and more importantly,

expressibility. We think this is due to some key issues:

1. Commonly, models are aimed at an older version of web technology, and

cannot express client-side user interactivity.

2. Most models are not easily extensible, which prevents developers from adding

support for new technologies.

3. Many models have no CASE tool support or are proprietary, which hinders

industry adoption, making it unclear if such a model is expressive enough, and

preventing model extensibility.

One other major issue we expect to encounter is the speed of web technology

development; it is more than likely that by the end of this project there will be

some significant new concepts in web technology. In particular, upcoming browser

platforms such as Firefox 3 offers revolutionary new technologies such as offline

browsing and better graphics support [21]; the upcoming HTML 5 standard offers

offline support, new content elements, a new event source element, and significant

changes to the client API [22].

Both of these proposals did not exist at the start of this Ph.D., and similarly

we expect the development of other new technologies within the next 24 months,

which would create significant risk in such a research project. To handle this risk, we

are undertaking research in a iterative2 fashion as illustrated in Figure 2.1 (adapted

from [24]). A timetable of our iterations is provided in Table 5.1.

1Notwithstanding industry examples which are under direct influence from the authors them-
selves [20].

2A similar option, often confused with iterative development, is incremental development; how-
ever, this approach is too agile for our project, which requires dedicated research. See [23] for a
discussion of these two approaches and their respective benefits.

CHAPTER 2. RESEARCH 6

Figure 2.1: Iterative Development Lifecycle

Iterative development is known to focus development and emphasise the de-

velopment of deliverable artefacts. Compared with conventional approaches, this

reduces project risk and increases the participation of stakeholders [25]. This ap-

proach also allows us to handle changing requirements, resolving the challenges

imposed by the volatile nature of the web. The focus on deliverable artefacts will

also implicitly provide us with sufficient documentation, experience in extendibility,

a detailed and robust current model, and a functional proof-of-concept CASE tool.

Researchers argue that such a focus on usable, deliverable tools and processes is

vital to transform industry [26, 27].

Chapter 3

State of the Art

By simplifying a system in an abstract form (a model), new knowledge about the

system can be discovered, and in some cases, allows simulation of the original system

[28]. In regards to software development, the practical effects of having an abstract

model of a complicated systems allows stakeholders to collaborate and communi-

cate more effectively. A common modelling platform to use in this situation is UML

[2], which can also be extended to model any domain through its extensibility func-

tionality [29]. Using a model increases the conceptual understanding of a system;

and potentially, provides the ability to share and integrate models using interchange

formats such as XMI [30].

3.1 Existing Languages

The benefits of using models combined with the apparent methodology crisis has

sparked the development of a significant number of modelling approaches. We have

found that they tend to either be abandoned, poorly implemented, and lack the

features required to model industry-standard web applications.

3.1.1 WebML

As the most-researched and commercialised academic web application language,

WebML [13] provides for the description of web applications through five models,

as summarised in [16]. One of these models is presented in Figure 3.1. These models

are entirely server-side, and as a consequence, it is difficult to describe client-side

7

CHAPTER 3. STATE OF THE ART 8

Figure 3.1: Hypertext Model of a simple WebML application

functionality such as client-side events or offline toolkits. WebML also has poor

support for web concepts, being unable to directly represent sessions, cookies1, or

scripting.

One upcoming client-side extension [32] aims to provide client-side objects

through the use of additional stereotypes in the Hypertext Model. Another up-

coming AJAX extension [33] aims to address the use of interactive components,

but this is implemented as a new library, rather than solving the main challenges in

distributed components. User support is not built into the model, possibly compro-

mising security. The model and CASE tool is closed source suggesting extensibility

will be difficult.

3.1.2 UWE

UML-based Web Engineering [11] is an extension to UML which aims to provide

a web-centric modelling approach to web applications. UWE consists of more in-

dividual models than WebML, but provides automatic and semi-automatic tools2,

implemented in it’s ArgoUML-based CASE tool ArgoUWE [35], to simplify the

1Through an extension, one can access global variables which could be considered part of the
session or cookie [31].

2Using QVT model transformation technology [34].

CHAPTER 3. STATE OF THE ART 9

Figure 3.2: Navigation Structure Model of a simple UWE application

model development process. One of these models is presented in Figure 3.2, based

on [11]. All of the models are directly UML models or simple extensions based on

stereotypes, as summarised in [16].

Like WebML, these models are entirely server-side, and cannot describe client-

side functionality. Users and security are also ignored, assuming the developer will

deal with these directly in the application logic. UWE has less support for web

concepts than WebML, also ignoring e-mails and browser identification. However,

it’s standards-based approach and automatic model transformation processes are

promising in regards to future extensibility.

3.1.3 UML Extensions

Conallen’s UML extension [36] aims to describe web applications through the

use of four major UML models – the use case diagram, activity diagrams, sequence

diagrams and extended class diagrams. The resulting model is fairly complex (see

Figure 3.3, based on [36]) due to its UML heritage. It is apparently supported

by the Rational CASE tool, but this implementation could not be found. It is

very platform-dependent, and ignores the client side completely. It lacks security

CHAPTER 3. STATE OF THE ART 10

and database modelling3 concepts, as well as browser concepts and even sending

e-mails.

The extension initially appears promising and is frequently cited, but severely

lacks the expressibility required to describe interactive web applications. It is possible

that this could be addressed by creating new stereotypes and models, but due to

it’s complexity this work will only remain a source of inspiration.

Web Unified Modelling Language (WUML) [12] aims to address both web

application design and customisation concerns in one UML extension, but neglects

aspects related to web applications, and instead focuses on the modelling of context

information in UML and applying it to core UML concepts such as packages.

The UML profile for Schedulability, Performance and Time Specification

(SPT) [37] is an official OMG profile to add events, actions and concurrency to UML

packages. Whilst this could be a useful source of inspiration towards developing an

actual model, the SPT extension is focused too much on the issues of concurrency,

shared resources, resource management and performance analysis, and consequently

it may prove beneficial to not include the entire profile in a modelling language.

3.1.4 Older Languages

Earlier approaches to model web applications have also been investigated, such as

Araneus [38], HDM [39], Autoweb [40] and OOHDM [14], but these are dated and

cannot be used in any practical context.

3.1.5 Formal Models

Rather than providing a visual model, work has been done on describing web ap-

plications from a more formal perspective, with roots in algebra and graph theory.

Schewe [41] describes Web Information Systems as a triplet of issues: content,

navigation and presentation, and goes on to formally describe the functionality of

each triplet in the system. However, the approach lacks the same support for web

content as older languages, and cannot handle interactive functionality.

The clear benefit of using a formal model for describing web applications is

that the model also allows us to formally verify the functionality of the system as

described; however, these are much more difficult for developers to understand, and

3Except through referencing DCOM-style interfaces.

CHAPTER 3. STATE OF THE ART 11

Figure 3.3: Overview Class Diagram of Conallen’s UML extension

CHAPTER 3. STATE OF THE ART 12

without a usable CASE tool or real-world implementation, will never be accepted

by industry [42].

3.1.6 Commercial Approaches

Web application development software tend to all follow similar approaches; they act

as code generators based on textual source code, and do not use an actual model.

This may be due to their history as IDEs and not model-based tools. Software such

as Adobe Dreamweaver, NetBeans Visual Web Pack, Microsoft Visual Studio and

Zend Studio fall into this category.

CASE tools approach the problem from a different direction; Apollo4 allows users

to edit code and the UML model at the same time [43], as shown in Figure 3.4.

Apollo lacks web support, but the approach is promising and inspiring for future

development, as it allows the model to stay synchronised with the implementation,

an identified major problem with existing tools [44].

Figure 3.4: Simultaneously editing a UML model and it’s code in Apollo

3.2 Frameworks

A practical solution to answering the conceptual gap in web development is the use

of frameworks, to apply standard solutions to common problems. A framework is

”a reusable, ’semi-complete’ application that can be specialised to produce custom

4A successor to the popular Poiseidon UML 1.4 editor.

CHAPTER 3. STATE OF THE ART 13

applications” [45]. Popular frameworks in industry include Ruby on Rails, Symfony

for PHP, Struts for JSP, Seaside for Smalltalk, Spring for Java, and Spring.NET for

ASP.Net. By taking a very practical approach, frameworks are popular in industry

due to rapid development time and stability.

Frameworks could be seen as extensions to existing programming languages,

which only provide boiler-plate code specific to a particular problem domain. How-

ever, depending on the complexity of the framework, the lines between mere boiler-

plate code and full-fledged language instantiation becomes blurred; for example,

Symfony provides a custom database interface which is radically different from

PHP and could be considered a new language. The only issue surrounding the use

of frameworks is in the difficulty in extending the framework to different problem

domains; in this case, more complexity must be built into the framework, or a new

approach must be developed entirely.

3.3 Other Literature

Web application modelling has been extensively researched in the past, with [8] an

excellent survey of the fundamental problems with existing approaches. Other re-

views concern themselves with evaluating the functional requirements of languages

[46, 47], and consistently find that existing languages are inadequate due to defi-

ciencies in expressibility, usability or implementation support. Some reviews are too

dated for serious consideration [48, 49].

Research in describing interactive web applications can be derived from the work

done in hypermedia applications [26, 15], notwithstanding hypermedia’s preference

to proprietary user interfaces such as CD-ROM applications [27]. Web applications

can be considered low-level hypermedia applications [7]; however the requirements

of web applications adds unique challenges that existing surveys tend to neglect,

both in terms of technical issues and usability issues [9].

Discussions on the suitability of model-driven approaches are found widely in

existing literature, with the best overviews by [30] and [50]. [9] discusses the use

of MDA and it’s natural advantages to address the unique problems introduced by

web applications, such as improving usability and future maintenance.

CHAPTER 3. STATE OF THE ART 14

3.4 New Functionality

Interactive web applications are primarily focused on the AJAX concept [51], which

allows for a web application to spawn background network requests asynchronously,

and access and modify the existing HTML DOM correspondingly with the use of

client-side scripting. This allows the application to minimise the network traffic and

latency and improve efficiency, usability and responsiveness.

Key innovations in the area of web technologies include:

1. Client-side Scripting: The use of Javascript/ECMAScript [52] on the client

side allows for the browser to be more responsive to user interactions, for

example highlighting the current selection, or checking a form before it is

submitted to the remote server.

2. Document Object Model: Client-side scripting can access and modify the

DOM [53], a tree-based representation of the current web page. This allows

the browser to dynamically create new images, dialogs and content based on

user interaction, improving usability and responsiveness.

3. Web Services: By providing a publicly-accessible interface5 to a remote

network service, external applications can access these resources and combine

them in new and innovative ways, also known as mashups [54]. These services

can be described and accessed using standards such as SOAP [55] and XML-

RPC [56].

4. Data Feeds: Web applications can provide a live or delayed data feed to their

resources through the use of RSS [57], allowing clients to regularly retrieve

new data. This is commonly used by newsreaders to collate many diverse

news sources together, and is a core feature of Yahoo Pipes [58].

5. Pushlets: The Internet is generally a request-oriented medium; by keeping a

connection persistently open through the use of AJAX, and frequently parsing

this stream for new events, it is possible to simulate an event-based open

connection on the client side [59]6.

5Also known as an API.
6HTML 5 has proposed a new element called event-source, which will provide similar function-

ality.

CHAPTER 3. STATE OF THE ART 15

6. Offline Toolkits: External plugins7 can allow the web application to store

data and resources (images and scripts) on the client-side, allowing the ap-

plication to be used offline, which can be useful for unreliable Internet con-

nections. The upcoming Firefox 3 [21] and HTML 5 [22] releases are also

promoting this functionality.

One important concern of AJAX use is that it can be overused – web applications

compressed into one single scripted page can take a long time to load, and can reduce

accessibility8. Similarly, a web application which submits an overwhelming number

of AJAX requests can create substantial network traffic which will actually reduce

efficiency and responsiveness, and possibly crash the remote server.

3.5 Our Critical Review

By identifying a selection of key interactive web applications (Appendix B), we used

our knowledge of these applications to construct a list of 62 use cases, all of which

are possible with technology available today (Appendix C). These use cases are also

the requirements for any modelling language to address, and were grouped into key

areas (Table 3.1, adapted from [16]) and evaluated against existing approaches.

Our review found that not only do existing approaches neglect support for inter-

active web applications, the majority of these languages also have poor support for

the very web concepts they should be supporting already, such as sessions, events,

browsers, e-mails, users and security. This critical review was the basis of our first

paper [16] and the results are summarised according to a subjective ranking scale

(Table 3.2) as a feature matrix in Table 3.1.

Some common themes we can note is that existing modelling languages have

no direct support for events or interactive functionality, and instead provides this

functionality through component libraries that are difficult or impossible to extend.

They tend to ignore the web browser and common concepts such as users and

security, which are fundamental concepts in web development. There is generally

no support for model verification or CASE tool support, and some approaches do

not provide a real-world implementation. We believe that a modelling language for

the web will require software support, not only as a proof of concept, but also to

encourage discussion and industry support.

7Such as the Dojo plugin [60] and Google Gears [61].
8The accessibility and usability of RIAs are two important issues which need to be resolved [62].

CHAPTER 3. STATE OF THE ART 16

Feature WebML UWE W2000 OOWS OOHDM Araneus

Events Ok - Poor - - -

Browser Control Poor - - - - -

Lifecycles Poor Good Poor - - -

Users Good Poor Poor Poor - -

Security Ok Ok Poor - - -

Database Support Good Ok Poor Poor Poor Poor

Messaging Good Poor Ok - - -

UI Modelling Poor Ok Ok Poor Ok Poor

Platform Independence Excellent Excellent Good Excellent Good Ok

Standards Support Poor Excellent Excellent Ok Poor -

Use of Metamodels Poor Excellent Excellent Poor - -

Verification Ok Ok - - - Poor

CASE Tool Support Good Ok Poor Ok - Ok

Table 3.1: Feature Comparison of Existing Modelling Languages

Rating Concept Support

- No support at all

Poor Very limited support, difficult to implement

Ok Some support, some aspects cannot be implemented

Good Most aspects can be implemented with ease, generally complete

Excellent Ideal implementation of the concept

Table 3.2: Feature Comparison Measurements

3.6 Summary

We can safely say that based on our review, along with the other reviews discussing

some of the more fundamental features of web applications, no existing language

fully satisfies our requirements. There is an obvious conceptual gap between the

high-level web system concepts and the low-level technologies required to support

its implementation. This gap is highlighted by the arrival of new technologies,

adding additional complexity that needs to be simplified. Along with a CASE tool

implementation, a modelling language for interactive web applications is clearly

required.

Chapter 4

Enabling Technologies

Our desire to develop a new modelling language is centered around the recent arrival

of key technologies, which we expect will simplify the model development process

significantly.

4.1 Models

A model’s abstract simplification of reality implies that it cannot fully capture all

of the semantic details of an actual system. Consequently, models in industry tend

to focus on only the documentation and initial design of a system; many models

are abandoned early due to insychronity between the model and the implementation

[44] without the use of a sophisticated CASE tool [43].

To solve a problem as complex as modelling web applications, one may instead

define a Domain Specific Language (DSL) which allows the architect to define

solutions at the level of abstraction of the problem domain [29], allowing domain

experts to understand them easily. The reduced abstraction improves productivity

compared to using general-purpose modelling languages such as UML, which is more

commonly used for documentation and high-level system design purposes.

UML [2] is the standard software engineering modelling language, but its general

purpose approach directly impacts on its suitability as a domain-specific modelling

language. Common web concepts such as sessions, timed events and e-mails are

difficult to describe in classic UML models, and extension through UML 2.0 pro-

files [63] are required. Existing extensions such as UWE provide some web-based

17

CHAPTER 4. ENABLING TECHNOLOGIES 18

extensions to UML but as identified earlier, these generally ignore the same web

concepts.

The OMG recommends extending UML through the use of three key extension

mechanisms; stereotypes, tagged values, and constraints [29]. In practice, only

stereotypes are supported by existing CASE tools [64], and constraints are poorly

supported. This extension approach can only add new subclasses and constraints;

you cannot remove any existing UML notations or create new operations without

creating an entirely new UML derivative language [29]. Some developers note that

DSLs provide more precision and less complexity, and recommend extending UML

only if the majority of your concepts easily map onto existing UML concepts [29].

4.2 Metamodels

One approach which is enjoying a lot of attention is the Meta-Object Facility (MOF)

[18] approach. The MOF approach is based on four layers [50] from M0 (represent-

ing real-world things) to M3 (representing the meta-metamodel, the abstract frame-

works and languages describing the metamodel). A practical example of these four

layers is presented in Figure 4.1, adapted from [50], as programming languages are

themselves a model of a real system, with well-defined metamodels (the program-

ming language grammar) and meta-metamodels (the use of EBNF textual syntax

[50]). By creating your own domain-specific models, and describing them in a stan-

dard way, architects gain both the expressibility and ease-of-use benefits of a custom

language, and the portability and tool support of a standardised model architecture.

A similar concept, which is also attracting attention, is the Model-Driven Ar-

chitecture (MDA) [17] approach. MDA attempts to simplify the conceptual load

of multiple models by proposing three levels of abstraction; the Computation Inde-

pendent Model (CIM), the Platform-Independent Model (PIM) and the Platform

Specific Model (PSM), as illustrated in Figure 4.2 (adapted from [65]). This al-

lows us to understand the interactions between multiple models, as technically every

metamodel (in M2) can also be a model (M1) and a real-world thing (M0) [50].

The three layers are less clearly defined than in MOF, as a model can belong to any

layer, depending on context. They are also less strict, as note how a PIM can be

realised by another PIM.

To understand these two initially separate approaches, we can combine these into

CHAPTER 4. ENABLING TECHNOLOGIES 19

Figure 4.1: Programming languages in MOF

Figure 4.2: Levels of abstraction in MDA

a matrix, as shown in Figure 4.31. This illustrates the relationships between all of

the layers, and allows us to clearly illustrate the conceptual gap in web application

development. Currently the two models highlighted in red do not exist, and the

transformation from CIM to PSMs is manually done by the developer.

Our work is to create the Web Application PIM in this model, which is the source

of the conceptual gap discussed earlier. Without this layer, the work required to

translate the computationally independent layer (requirements and use cases) to the

actual implementation layers (SQL statements, Java code) is significant. Also note

the diverse range of M2 and M3 models used in the development of web applications;

1We are not yet sure what the real-world version of a platform-independent model would
represent.

CHAPTER 4. ENABLING TECHNOLOGIES 20

Figure 4.3: The conceptual gap in web development

it is specifically this diversity which adds such difficulty to the development process.

4.3 Metamodel Support

Another aspect to consider is the availability of computer-aided software engineering

(CASE) tools. CASE tools improve the development process for architects in terms

of reliability, stability and communication, and the use of these tools to also generate

source code from the model is becoming more popular [30].

An important benefit of using a standard metamodel for model development

is the developer may gain an almost-free CASE tool. Existing platforms such

as Eclipse’s plugin framework, Microsoft’s DSL toolkit2, and NetBean’s extension

mechanism allows for developers to easily create a fully-functional graphical CASE

tool, often with code generation facilities, directly from a metamodel specification.

We are specifically interested in Eclipse’s EMF framework (also known as the

Graphical Modeling Framework, GMF) [66]. It is hosted in the wildly successful

Eclipse platform [67], which is open source and well documented. It is supported

2Codenamed Whitehorse.

CHAPTER 4. ENABLING TECHNOLOGIES 21

by the software community and commercially by IBM, and is a very active topic

of research [68, 69] and development [70]. It provides a metamodel editor (both

graphically and textually) and can also import other metamodel formats [66, 71].

Through a wizard (Figure 4.4), this metamodel can be converted into a fully func-

tional CASE tool plugin with code generation functionality in a few easy steps [72].

Figure 4.4: The GMF Framework Wizard in Eclipse

4.4 Transformations and Code Generation

Another benefit of models is the concept of transformations; these allow us to

systematically transform an existing model into a new target model (or models),

following a set of transformation rules [73]. For example we can use transformations

to convert a WebML model into a UWE model, or to translate a DSL into the XMI

standard format for use in a CASE tool. These transformations can be achieved

through XML stylesheets (XSLT: [74]), or less commonly through visual mapping

tools [73].

A technically similar concept is the use of transforming models into actual code,

known as code generation. Whilst still transforming an existing model into another

model, code generation is focused on creating a concrete, detailed implementation

in a specific target platform that can be executed. Code generation techniques

aim to simplify development and improve portability and platform independence. A

model-driven application provides benefits for future maintenance, reducing costs

and increasing stability in the future.

It is common to split an application into the three MVC layers, as first pio-

neered in Smalltalk [75]: presentation (user interface), domain logic, and the data

itself. This reduces coupling and dependencies, and improves the conceptual sepa-

ration between the design and the implementation. It is especially common in web

CHAPTER 4. ENABLING TECHNOLOGIES 22

development, as it simplifies complexity and increases availability and security [3].

Similarly, by abstracting the code generation into separate layers using templates,

we can achieve a more modular and clearly defined approach to code generation.

EMF natively supports code generation through the use of Java Emitter Templates

(JET) [76], which follows this template-based approach. It uses a textual syntax

similar to scripted server-side pages for the generation of code in any language [77].

Another approach to model transformations is the upcoming standard of QVT

(MOF Query/Views/Transformations [78]), as recommended by the OMG. QVT

aims to bridge different models together in the MOF heirarchy by providing a stan-

dard transformation language. The standard is currently being finalised and CASE

tools are beginning to support this technology [79, 80].

4.5 Verification

Verification of a model can initially be achieved through using the Object Constraint

Language (OCL) [81] to define constraints on the composition of the model, however

this only verifies that the model is valid, and cannot verify that the system will

satisfies higher-level requirements.

An important feature we aim to address is to verify the implementation of the

model and its execution, through the use of formal model verification. Run-time

testing of implemented applications remain the standard for verifying application

correctness [82], but much work has been done in validating a model derived from

the application implementation [10, 83, 84], or more appropriately in our situation,

the original model itself [34].

By verifying the model directly instead of the implementation, we can evalu-

ate functional properties of web applications, such as concurrency issues and the

interaction between multiple users. We can also evaluate non-functional require-

ments such as broken links, syntax validation, load testing, page response time [85],

security, and accessibility.

Integration of model verification into our anticipated CASE tool would signif-

icantly improve the visibility of web application verification. Some work has been

done in EMF to integrate model validation directly into its framework [86], however

the integration of an existing industrial-strength validator such as Alloy [19] would

likely improve the viability of model verification.

Chapter 5

Progress

Our first three iterations have been completed. In these iterations we have iden-

tified key examples of interactive web applications on the Internet (Appendix B);

concentrated their features into a comprehensive set of requirements for a mod-

elling language (Appendix C); critically evaluated existing approaches (Table 3.1);

and prototyped development in EMF to identify it’s suitability as a target develop-

ment platform. Along with this work we have presented a number of publications

and seminars to promote our work.

5.1 Publications

In the last year we have authored two papers for two Australasian conferences, with

both accepted and presented by myself.

• In November 2007 I presented my first paper, Towards an Interactive Web

Modelling Language [87], at SIENZ 07 in Auckland. In this paper I presented

and discussed the research programme to software engineers and postgraduate

students.

• In January 2008 I presented our second paper, Survey of Existing Languages

to Model Interactive Web Applications [16], at the Asia-Pacific Conference on

Conceptual Modelling 2008 in Wollongong, Sydney. In this paper we presented

our model requirements, a survey of five existing academic languages to model

interactive web applications, and discussed our future work.

23

CHAPTER 5. PROGRESS 24

• In March 2007 I presented a short seminar at Massey University on WebML

as part of the Software Engineering seminar series in 2007. In this seminar

I presented my research proposal along with a preliminary investigation into

WebML.

• Early this year in February I gave an informal presentation at Victoria Uni-

versity, Wellington, where I once again presented our research proposal and

our early prototyping work on the metamodel. The feedback I obtained from

this presentation was invaluable. This presentation will be followed up with a

formal computer science seminar in March.

Future conferences which I plan to submit papers or attend in the next 12 months

(dependent on funding) include NZCSRSC 2008 in Christchurch; WISE 2008 in

Auckland; MODELS 2008 in Toulouse, France; APCCM 2009 in Wellington; ICWE

2009; VL/HCC 2009; ASWEC 2009; and WebStock 2009.

5.2 Future Direction

An important concern with developing an interactive modelling language is to quan-

titatively measure its suitability against other approaches; however, unlike other

areas such as rule modelling1 and enterprise software development2, there is no

standard industry benchmark for interactive web applications. Di Martino et al [90]

note the lack of publicly available data for empirical evaluations – in their case, for

web cost estimation – and instead collected data from private industry projects. [49]

covers the implementation of a standard conference management web application

in multiple methodologies, but no comparison or benchmark is provided, and this

application is too trivial for our work.

As such, our third iteration will focus on the development of an appropriate

benchmark for use in evaluation, along with developing some quantitative measures

to compare with. Measures may be inspired by the work on the Tukutuku database

[91], such as the number of new and reused web pages, the number of high-effort

functions, and the actual total effort used in developing the application.

The development of this benchmark is crucial, as a benchmark will allow us

to quantitatively evaluate existing languages; evaluate our extensions; evaluate the

1Rule modelling has the EURent fictional case study benchmark [88].
2Enterprise software has the Java Pet Store fictional scenario benchmark [89].

CHAPTER 5. PROGRESS 25

development of our own language; and understand more about the potential issues

faced with new technology. The benchmark will be feature-based and inspired by

popular web applications3 and projects from industry; additional input from other

researchers is similarly important. Once this benchmark application is developed, we

can attempt to extend an existing language and evaluate our extensions according to

this benchmark. This will allow us to conclusively decide if it is possible or sensible

to extend an existing language, or if it would be beneficial to develop our own.

Following this, the language will be comprehensively designed and implemented

along with a proof-of-concept CASE tool. Our work will then be re-evaluated with

the same benchmark application to identify progress. Any issues discovered will be

used to refine and finalise our final approach. We will also spend some time on

working on model verification, and its integration with existing model checkers, as

well as investigating potential integration into the development platform.

Some thought has gone into considering potential visual metaphors for the web

application model, such as the use of implicit model elements to simplify the model;

simplifying communication channels between common objects (such as database to

interface); dynamic implementation stereotypes based on user agent capabilities;

and drilling deeper into a model for specialisation. Research is needed to justify

these interface decisions, but we note that this Ph.D. is focused more on developing

a metamodel than the visual interface; this could be a good project for user interface

research.

Discussion on the usefulness of the modelling language and its corresponding

CASE tool support would be strengthened through evaluation of the model with

industry developers. This could only be achieved once the project has matured

enough to be user-friendly, but would nicely coincide with the public release of the

tool. It would be important to evaluate the experiment in terms of the features of

the model rather than the efficiency of the user interface surrounding it.

The final and most important goal in this project is to implement at least one

real-world application, and use our approach to deploy it into at least two different

platforms. This is an important validation step to show our approach is practical

and suitable [26, 27], and will be a good source of discussion for the evaluation of

our design. One piece of work that would also be useful is a simple translator to

convert existing models in languages such as WebML into our new model.

3We have noted that most public sites, particularly those in Appendix B, use relatively few new
technologies at once; to ensure that we are feature-complete, we will have to create our benchmark
by combining all of them together.

CHAPTER 5. PROGRESS 26

Iteration End Date Status

0 Requirements July 2007 Complete
1 Existing Evaluation November 2007 Complete
2 Prototype Solution January 2008 Complete
3 Develop Benchmark March 2008 In Progress
4 Language Extension and Evaluation May 2008
5 Model Development August 2009
6 CASE Tool Development November 2009
7 Evaluate Model with Benchmark February 2009
8 Verification and Integration May 2009
9 Model and CASE Tool Development July 2009
10 Real World Evaluations October 2009
11 Final Evaluations December 2009
12 Thesis Writeup February 2010

Table 5.1: Proposed Timetable

5.3 Final Thesis

A conceptual structure for the final thesis is provided in Appendix D. Thanks to

the deliverable-oriented approach of iterative development used in our research, we

also plan to provide these final artefacts at the conclusion of this Ph.D.:

• A functional and practical metamodel (the modelling language)

• An industry-inspired interactive web application benchmark specification

• A functional CASE tool as a proof-of-concept application

• Code generation from the model to at least two platforms

• Model verification integration with existing model checkers

• Transformations between other languages

• Real world case study implementation and discussion

Appendix A

Glossary

AJAX

Asynchronous Javascript and XML; a set of technologies that allow web applications

to execute client-side scripting, send asynchronous network requests, and access the

client-side document object model (DOM) to provide a richer user interface.

Computer-Aided Software Engineering Tool (CASE tool)

Software tools used in the design, development and maintenance of software.

Desktop Software Application

Conventional software as that which requires the download and installation of the

majority of the application onto a local machine.

Flash

A free, proprietary client-based software component that provides a richer interface

to users than conventional web browsers, through the use of animation, rich 2D and

3D graphics, sound and video.

Interactive Web Application

See Rich Internet Application

Metamodel

A model of a model, highlighting the domain concepts and properties of the model

itself.

27

APPENDIX A. GLOSSARY 28

Model

A representation of the essential apsects of an existing system (or a system to be

constructed) which presents knowledge of that system in a usable form [92].

Rich Internet Application (RIA)

A web application which features a richer interface than conventional web applica-

tions, through the use of client-side scripting, asynchronous events and improved

browser functionality, usually through AJAX or Flash [32, 15].

Software Application

Software performing productive tasks for users, such as word processors and calendar

applications.

Web Application

Software with the same goal as desktop software applications, but instead execute

primarily through web browsers connected to the Internet, and require little to no

installation.

Web 2.0

An intangible concept which can be said to emphasises interaction, community and

openness in web applications [93]; most popularly realised through the combination

of social networks and Rich Internet Applications.

Appendix B

Interactive Web Applications

As part of our requirements discovery, we identified the most visible expressions of

interactivity in web applications, and decomposed their features down into common

requirements in Appendix C. These web applications are:

1. Gmail: A web-based e-mail client, including an integrated chat-box, POP3/SMTP

integration and rich text capabilities.

http://www.gmail.com

2. Writely: A collaborative web-based word document editor, allowing multiple

users to edit a document at once. Now part of Google Docs.

http://docs.google.com

3. Google Calendar: A calendar application, featuring mobile phone notifica-

tions and using external calendar data sources.

http://calendar.google.com

4. Google Maps: A drag-and-drop interface to worldwide maps, which also

allows mashups with other applications.

http://maps.google.com

5. YouTube: A video-sharing site, allowing users to upload, view, rate and share

their own videos.

http://www.youtube.com

6. Live Search Images: A rich image-searching application with a fluid inter-

face.

29

http://www.gmail.com
http://docs.google.com
http://calendar.google.com
http://maps.google.com
http://www.youtube.com

APPENDIX B. INTERACTIVE WEB APPLICATIONS 30

http://images.live.com

7. Digg: A collaborative news sharing site.

http://digg.com

8. Flickr: A collaborative image sharing site.

http://www.flickr.com

9. Google Reader: A feed reader, retrieving data feeds of content from other

sites, which also features offline reading through Google Gears [61].

http://reader.google.com

10. Google Pages: A rich visual editor for producing and publishing static web

sites.

http://www.googlepages.com

11. iGoogle: A personalised home-page with rich, scripted widgets contributed

by developers.

http://www.google.com/ig

12. Last.fm: A social networking site integrated with music, allowing users to

share their music tastes and listen to personalised Internet radio.

http://www.last.fm

13. Facebook: A social networking site providing a public API which applications

can use to harness the power of the social network.

http://www.facebook.com

http://images.live.com
http://digg.com
http://www.flickr.com
http://reader.google.com
http://www.googlepages.com
http://www.google.com/ig
http://www.last.fm
http://www.facebook.com

Appendix C

Web Application

Requirements

1. Update Data

2. View Data

3. Pagination

4. User Action Auditing

5. Server Transaction Support

6. Local Data Storage

7. Server Data Access

8. Persistent Client Data

9. Temporary Server Data

10. Uploading Files

11. User Authorisation

12. Password Reset

13. Session Support

14. Account Registration

15. Automatic User Auth

16. Static Views (HTML)

17. Async Form Validation

18. Client Form Validation

19. Server Form Validation

20. Multiple Browser Support

21. Mobile Phone Support

22. Remote Data Source

23. Active Remote Data Source

24. Data Feeds

25. Web Service User

26. Back Button Control

27. Opening New Windows

28. Client-Side Application

29. Mobile Phone Communication

30. E-mailing Users

31. E-mail Unsubscription

32. Persistent Errors

33. User Content Security

34. User Collaboration

35. Rich Help Tips

36. Interactive Map

37. Drag and Drop

31

APPENDIX C. WEB APPLICATION REQUIREMENTS 32

38. Client Timer Support

39. Server Timer Support

40. Page Caching

41. Offline Application Support

42. Loading Time Support

43. Flash MP3 Support

44. Flash Support

45. Internationalisation Support

46. Logout Control

47. Single Sign-In Solutions

48. User Redirection

49. Keyboard Shortcuts

50. Undo/Redo Support

51. Browser-Based Chat

52. Pop-up Window Support

53. Incompatible Client Warning

54. Store Data in Local Database

55. Store Resources Locally

56. Communication with Plugins

57. Scheduled Events

58. Web Service Provider

59. Runtime Interface Updates

60. Out-of-Order Events

61. Backwards-Compatible Scripting

62. Spellchecking

Appendix D

Final Thesis Structure

1. Abstract, Preface

2. Introduction

(a) Problem statement

(b) Objectives

(c) Approach

(d) Outline of Thesis

3. State of the Art

(a) The Need for engineering

(b) Existing Languages

(c) New Technologies

(d) Existing Reviews

i. Literature Review

(e) Our Critical Review

(f) Summary

4. Enabling Technologies

5. Contributions

(a) Approach

(b) Features

(c) Goals

i. Case study
ii. User evaluation
iii. Metrics

6. Review

33

APPENDIX D. FINAL THESIS STRUCTURE 34

(a) Feature Evaluation

(b) Benchmark Application

(c) Case Study 1: benchmark

(d) Case Study 2: real world project

(e) User Evaluation

(f) Metrics

7. Evaluation

(a) Original Contributions

(b) Discussion

8. Conclusion

9. Appendices

(a) Interactive Web Applications

(b) Language Requirements

(c) Benchmark Details

(d) Modelling Language Details

(e) Implementation Details

(f) Case Study 1 Implementation

(g) Case Study 2 Implementation

10. References

Bibliography

[1] A. T. Manes, Web Services: A Manager’s Guide. Boston, MA, USA: Addison-

Wesley Longman Publishing Co., Inc., 2003.

[2] Linda Heaton, “Unified Modeling Language (UML): Superstructure Specifica-

tion, v2.0,”Object Management Group, Tech. Rep., 2005. [Online]. Available:

http://www.omg.org/cgi-bin/doc?formal/05-07-04

[3] J. Offutt, “Quality Attributes of Web Software Applications,” IEEE Software,

vol. 19, no. 2, pp. 25–32, 2002.

[4] E. Mendes, N. Mosley, and S. Counsell, “The Need for Web Engineering: An

Introduction,” in Web Engineering, E. Mendes and N. Mosley, Eds. Springer,

2006, pp. 1–27.

[5] H.-W. Gellersen and M. Gaedke, “Object-Oriented Web Application Develop-

ment,” IEEE Internet Computing, vol. 3, no. 1, pp. 60–68, 1999.

[6] M. J. Taylor, J. McWilliam, H. Forsyth, and S. Wade, “Methodologies and

Website Development: A Survey of Practice,” Information & Software Tech-

nology, vol. 44, no. 6, pp. 381–391, 2002.

[7] M. Lang and B. Fitzgerald, “Hypermedia Systems Development Practices: A

Survey,” IEEE Software, vol. 22, no. 2, pp. 68–75, 2005.

[8] S. S. Selmi, N. Kräıem, and H. H. B. Ghézala,“Toward a Comprehension View

of Web Engineering,” in ICWE, 2005, pp. 19–29.

[9] R. Gitzel, A. Korthaus, and M. Schader, “Using established Web Engineering

knowledge in model-driven approaches,”Sci. Comput. Program., vol. 66, no. 2,

pp. 105–124, 2007.

35

http://www.omg.org/cgi-bin/doc?formal/05-07-04

BIBLIOGRAPHY 36

[10] C. Bellettini, A. Marchetto, and A. Trentini,“WebUml: reverse engineering of

web applications,” in SAC ’04: Proceedings of the 2004 ACM symposium on

Applied computing. New York, NY, USA: ACM, 2004, pp. 1662–1669.

[11] N. Koch and A. Kraus,“The Expressive Power of UML-based Web Engineering,”

in IWWOST’02, 2002, pp. 105–119.

[12] G. Kappel, W. Retschitzegger, and W. Schwinger,“Modeling Ubiquitous Web

Applications: The WUML approach,” in International Workshop on Data

Semantics in Web Information Systems (DASWIS-2001), Yokohama, Japan,

2001.

[13] S. Ceri, P. Fraternali, and A. Bongio, “Web Modeling Language (WebML):

A Modeling Language for Designing Web Sites,” in Proceedings of the 9th

international World Wide Web conference on Computer networks. Amsterdam,

The Netherlands, The Netherlands: North-Holland Publishing Co., 2000, pp.

137–157.

[14] G. Rossi and D. Schwabe, “Model-Based Web Application Development,” in

Web Engineering, E. Mendes and N. Mosley, Eds. Springer, 2006, pp. 303–

333.

[15] J. C. Preciado, M. Linaje, F. Sanchez, and S. Comai, “Necessity of Method-

ologies to Model Rich Internet Applications,” in WSE ’05: Proceedings of the

Seventh IEEE International Symposium on Web Site Evolution. Washington,

DC, USA: IEEE Computer Society, 2005, pp. 7–13.

[16] J. Wright and J. Dietrich, “Survey of Existing Languages to Model Interac-

tive Web Applications,”in Proceedings of the Fifth Asia-Pacific Conference on

Conceptual Modelling (APCCM 2008), Wollongong, NSW, Australia, 2008.

[17] J. Mukerji and J. Miller, “Model-Driven Architecture Guide, v1.0.1,” Object

Management Group, Tech. Rep., 2003. [Online]. Available: http://www.omg.

org/cgi-bin/doc?omg/03-06-01

[18] Linda Heaton,“Meta Object Facility (MOF) Core Specification, v2.0,”Object

Management Group, Tech. Rep., 2006. [Online]. Available: http://www.omg.

org/cgi-bin/doc?formal/2006-01-01

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

BIBLIOGRAPHY 37

[19] D. Jackson, Software Abstractions: Logic, Language, and Analysis, Cambridge,

Mass., 2006.

[20] R. Acerbis, A. Bongio, M. Brambilla, M. Tisi, S. Ceri, and E. Tosetti, “Devel-

oping eBusiness Solutions with a Model Driven Approach: The Case of Acer

EMEA,” in ICWE, 2007, pp. 539–544.

[21] Mozilla Foundation, “Firefox 3 for developers,” 2008. [Online]. Available:

http://developer.mozilla.org/en/docs/Firefox 3 for developers

[22] W3C Group, “HTML 5: A vocabulary and associated APIs for HTML and

XHTML,”W3C Working Draft 26 February 2008, Tech. Rep., 2008. [Online].

Available: http://www.w3.org/html/wg/html5/

[23] A. A. Cockburn, “The impact of object-orientation on application develop-

ment,” IBM Syst. J., vol. 38, no. 2-3, pp. 308–332, 1999.

[24] Milena Litoiu, “Reduce complexity with model-driven development, Part

1: Use the IBM Software Development Platform to develop end-to-end

solutions,” IBM, Tech. Rep., 2004. [Online]. Available: http://www.ibm.

com/developerworks/ibm/library/i-modev1/

[25] Eric Lopes Cardozo, “The seven habits of effective iterative development,”

IBM, Tech. Rep., 2002. [Online]. Available: http://www-128.ibm.com/

developerworks/rational/library/1742.html

[26] J. C. Preciado, M. Linaje, F. Sanchez, and S. Comai, “Hypermedia Systems

Development: Do We Really Need New Methods?” in IS2002: Proceedings of

the Informing Science + IT Education Conference, Cork, Ireland, 2002.

[27] C. Barry and M. Lang,“A Survey of Multimedia and Web Development Tech-

niques and Methodology Usage,” IEEE MultiMedia, vol. 8, no. 2, pp. 52–60,

2001.

[28] R. Frigg and S. Hartmann,“Models in Science,” in The Stanford Encyclopedia

of Philosophy, E. N. Zalta, Ed., 2008. [Online]. Available: http://plato.

stanford.edu/archives/spr2008/entries/models-science/

[29] J. Bruck and K. Hussey, “Customizing uml: Which tech-

nique is right for you?” Tech. Rep., 2007. [Online].

http://developer.mozilla.org/en/docs/Firefox_3_for_developers
http://www.w3.org/html/wg/html5/
http://www.ibm.com/developerworks/ibm/library/i-modev1/
http://www.ibm.com/developerworks/ibm/library/i-modev1/
http://www-128.ibm.com/developerworks/rational/library/1742.html
http://www-128.ibm.com/developerworks/rational/library/1742.html
http://plato.stanford.edu/archives/spr2008/entries/models-science/
http://plato.stanford.edu/archives/spr2008/entries/models-science/

BIBLIOGRAPHY 38

Available: http://www.eclipse.org/modeling/mdt/uml2/docs/articles/

Customizing UML2 Which Technique is Right For You/article.html

[30] T. O. Meservy and K. D. Fenstermacher,“Transforming Software Development:

An MDA Road Map,” IEEE Computer, vol. 38, no. 9, pp. 52–58, 2005.

[31] M. Matera, M. Matera, A. Maurino, S. Ceri, and P. Fraternali, “Model-driven

design of collaborative web applications,”Softw. Pract. Exper., vol. 33, no. 8,

pp. 701–732, 2003.

[32] A. Bozzon, S. Comai, P. Fraternali, and G. T. Carughi,“Conceptual Modeling

and Code Generation for Rich Internet Applications,”in ICWE ’06: Proceedings

of the 6th international conference on Web engineering. New York, NY, USA:

ACM Press, 2006, pp. 353–360.

[33] WebRatio Group, “WebRatio AJAX Extension,” 2007. [Online]. Available:

http://www.webratio.com/WebRatio-AJAX.do

[34] N. Koch, “Classification of Model Transformation Techniques Used in UML-

based Web Engineering,”Software, IET, vol. 1, no. 3, pp. 98–111, 2007.

[35] A. Knapp, N. Koch, F. Moser, and G. Zhang, “ArgoUWE: A Case Tool for

Web Applications,”in First Int. Workshop on Engineering Methods to Support

Information Systems Evolution (EMSISE 2003), 2003.

[36] J. Conallen, Building Web applications with UML. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2000.

[37] Linda Heaton,“UML Profile for Schedulability, Performance, and Time, v1.1,”

Object Management Group, Tech. Rep., 2005. [Online]. Available: http://

www.omg.org/cgi-bin/doc?formal/2005-01-02

[38] P. Merialdo, P. Atzeni, and G. Mecca, “Design and Development of Data-

Intensive Web Sites: The Araneus Approach,”ACM Trans. Inter. Tech., vol. 3,

no. 1, pp. 49–92, 2003.

[39] F. Garzotto, P. Paolini, and D. Schwabe, “HDM – A Model-Based Approach

to Hypertext Application Design,” ACM Trans. Inf. Syst., vol. 11, no. 1, pp.

1–26, 1993.

http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
http://www.eclipse.org/modeling/mdt/uml2/docs/articles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html
http://www.webratio.com/WebRatio-AJAX.do
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.omg.org/cgi-bin/doc?formal/2005-01-02

BIBLIOGRAPHY 39

[40] P. Fraternali and P. Paolini, “Model-driven development of Web applications:

the AutoWeb system,” ACM Trans. Inf. Syst., vol. 18, no. 4, pp. 323–382,

2000.

[41] K.-D. Schewe, “The Challenges in Web Information Systems Development in

15 Pictures (Invited Talk),” in ISTA, 2005, pp. 204–215.

[42] P. H. Carstensen and L. Vogelsang, “Design of Web-Based Information Sys-

tems - New Challenges for Systems Development?” in Proceedings of the 9th

European Conference on Information Systems (ECIS), 2001.

[43] Gentleware, “Apollo for Eclipse,” 2007. [Online]. Available: http://www.

gentleware.com/apollo.html

[44] T. Massoni, R. Gheyi, and P. Borba, “A model-driven approach to formal

refactoring,” in OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and applica-

tions. New York, NY, USA: ACM, 2005, pp. 124–125.

[45] M. Fayad and D. C. Schmidt,“Object-oriented application frameworks,”Com-

mun. ACM, vol. 40, no. 10, pp. 32–38, 1997.

[46] A. Gu, B. Henderson-Sellers, and D. Lowe, “Web Modelling Languages: The

Gap Between Requirements and Current Exemplars,” in Proceedings Of The

Eighth Australian World Wide Web Conference, 2002.

[47] R. Atterer,“Where Web Engineering Tool Support Ends: Building Usable Web-

sites,” in SAC ’05: Proceedings of the 2005 ACM symposium on Applied com-

puting. New York, NY, USA: ACM Press, 2005, pp. 1684–1688.

[48] P. Fraternali, “Tools and approaches for developing data-intensive Web appli-

cations: a survey,”ACM Comput. Surv., vol. 31, no. 3, pp. 227–263, 1999.

[49] D. Schwabe, Ed., First International Workshop on Web-Oriented Software

Technology, 2001. [Online]. Available: http://www.dsic.upv.es/˜west2001/

[50] D. Djuric, D. Gasevic, and V. Devedzic,“The Tao of Modeling Spaces,”Journal

of Object Technology, vol. 5, no. 8, 2006.

[51] J. J. Garrett,“Ajax: A New Approach to Web Applications,”Tech. Rep., 2005.

[Online]. Available: http://www.adaptivepath.com/publications/essays/

archives/000385.php/

http://www.gentleware.com/apollo.html
http://www.gentleware.com/apollo.html
http://www.dsic.upv.es/~west2001/
http://www.adaptivepath.com/publications/essays/archives/000385.php/
http://www.adaptivepath.com/publications/essays/archives/000385.php/

BIBLIOGRAPHY 40

[52] ECMA International, “ECMA-262: ECMAScript Language Definition, Edition

3,” ECMA International, Tech. Rep., 1999. [Online]. Available: http://www.

ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

[53] W3C Group, “Document Object Model (DOM) Level 3 Core Specification,”

W3C Recommendation 07 April 2004, Tech. Rep., 2004. [Online]. Available:

http://www.w3.org/TR/DOM-Level-3-Core/

[54] A. Ankolekar, M. Krötzsch, T. Tran, and D. Vrandecic, “The Two Cultures:

Mashing up Web 2.0 and the Semantic Web,” in WWW ’07: Proceedings of

the 16th international conference on World Wide Web. New York, NY, USA:

ACM Press, 2007, pp. 825–834.

[55] W3C Group, “Simple Object Access Protocol (SOAP) Version 1.2,” W3C

Recommendation 27 April 2007, Tech. Rep., 2007. [Online]. Available:

http://www.w3.org/TR/soap12-part1/

[56] D. Winer, “XML-RPC Specification,” UserLand Software, Tech. Rep., 1999.

[Online]. Available: http://www.xmlrpc.com/spec

[57] RSS Advisory Board, “RSS 2.0 Specification,” RSS Advisory Board, Tech.

Rep., 2007. [Online]. Available: http://www.rssboard.org/rss-specification

[58] Yahoo! Inc., “Yahoo Pipes,” 2007. [Online]. Available: http://pipes.yahoo.

com/

[59] J. van den Broecke, “Pushlets White Paper,” Just Object B.V., Tech. Rep.,

2002. [Online]. Available: http://www.pushlets.com/doc/whitepaper-all.

html

[60] Dojo Foundation, “The Dojo Toolkit,” 2007. [Online]. Available: http://

dojotoolkit.org/

[61] Google Inc., “Google Gears,” 2007. [Online]. Available: http://gears.google.

com

[62] W3C Group, “Accessible Rich Internet Applications (WAI-ARIA) Version 1.0,”

W3C Working Draft 4 February 2008, Tech. Rep., 2008. [Online]. Available:

http://www.w3.org/TR/wai-aria/

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/soap12-part1/
http://www.xmlrpc.com/spec
http://www.rssboard.org/rss-specification
http://pipes.yahoo.com/
http://pipes.yahoo.com/
http://www.pushlets.com/doc/whitepaper-all.html
http://www.pushlets.com/doc/whitepaper-all.html
http://dojotoolkit.org/
http://dojotoolkit.org/
http://gears.google.com
http://gears.google.com
http://www.w3.org/TR/wai-aria/

BIBLIOGRAPHY 41

[63] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An Introduction to UML

Profiles,”The European Journal for the Informatics Professional, vol. 5, no. 2,

April 2004. [Online]. Available: http://www.upgrade-cepis.org/issues/2004/

2/up5-2Editorial.pdf

[64] A. Schleicher and B. Westfechtel, “Beyond stereotyping: Metamodeling ap-

proaches for the UML,” in Proc. 34th Annual Hawaii International Conference

on System Sciences (HICSS-34), R. H. Sprague, Jr., Ed. IEEE Computer

Society, 2001.

[65] D. Pilone and N. Pitman, UML 2.0 in a nutshell. 1005 Gravenstein Highway

North, Sebastopol, CA 95472, USA: O’Reilly Media, Inc., 2005.

[66] A. Gerber and K. Raymond,“MOF to EMF: There and Back Again,” in eclipse

’03: Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology eX-

change. New York, NY, USA: ACM Press, 2003, pp. 60–64.

[67] Eclipse Foundation, “Eclipse.org Home,” 2007. [Online]. Available: http://

www.eclipse.org

[68] K. Ehrig, C. Ermel, S. Hänsgen, and G. Taentzer, “Towards Graph Transfor-

mation Based Generation of Visual Editors using Eclipse,”Electr. Notes Theor.

Comput. Sci., vol. 127, no. 4, pp. 127–143, 2005.

[69] U. Shani and A. Sela,“OO Design Methodology of a DSL using EMF: (demon-

stration for the telco revenue assurance domain),”in OOPSLA ’06: Companion

to the 21st ACM SIGPLAN conference on Object-oriented programming sys-

tems, languages, and applications. New York, NY, USA: ACM, 2006, pp.

698–699.

[70] Eclipse Foundation, “Eclipse Projects,” 2008. [Online]. Available: http://

www.eclipse.org/projects/listofprojects.php

[71] A. Schauerhuber, M. Wimmer, and E. Kapsammer, “Bridging existing Web

modeling languages to model-driven engineering: a metamodel for WebML,”

in ICWE ’06: Workshop proceedings of the sixth international conference on

Web engineering. New York, NY, USA: ACM, 2006, p. 5.

[72] Catherine Griffin, “Using EMF,” IBM, Tech. Rep., 2003. [Online]. Available:

http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html

http://www.upgrade-cepis.org/issues/2004/2/up5-2Editorial.pdf
http://www.upgrade-cepis.org/issues/2004/2/up5-2Editorial.pdf
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org/projects/listofprojects.php
http://www.eclipse.org/projects/listofprojects.php
http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html

BIBLIOGRAPHY 42

[73] S. Sendall and W. Kozaczynski,“Model transformation: the heart and soul of

model-driven software development,”Software, IEEE, vol. 20, no. 5, pp. 42–45,

Sept.-Oct. 2003.

[74] W3C Group,“XSL Transformations (XSLT) Version 2.0,”W3C Recommenda-

tion 23 January 2007, Tech. Rep., 2007. [Online]. Available: http://www.w3.

org/TR/xslt20/

[75] G. E. Krasner and S. T. Pope,“A description of the model-view-controller user

interface paradigm in the smalltalk-80 system,” Journal of Object Oriented

Programming, vol. 1, no. 3, pp. 26–49, 1988.

[76] Eclipse Foundation, “Eclipse Modeling: Java Emitter Templates,” 2007.

[Online]. Available: http://www.eclipse.org/emft/projects/jet/

[77] Remko Popma,“Introduction to jet,” Azzurri Ltd, Tech. Rep., 2004. [Online].

Available: http://www.eclipse.org/articles/Article-JET/jet tutorial1.html

[78] Mariano Belaunde, “Meta Object Facility (MOF) 2.0

Query/View/Transformation 1.0 Beta 2 Specification,” Object Manage-

ment Group, Tech. Rep., 2007. [Online]. Available: http://www.omg.org/

cgi-bin/doc?ptc/2007-07-07

[79] Borland Software Corporation, “Borland Together,” 2008. [Online]. Available:

http://www.borland.com/us/products/together/index.html

[80] T. Clark, T. Gardner, C. Griffin, and L. Tratt,“QVT technologies and Eclipse,”

Tech. Rep., 2003.

[81] Linda Heaton, “Object Constraint Language Specification, v2.0,” Object

Management Group, Tech. Rep., 2006. [Online]. Available: http://www.omg.

org/cgi-bin/doc?formal/2006-05-01

[82] H. Miao and H. Zeng,“Model Checking-based Verification of Web Application,”

in ICECCS ’07: Proceedings of the 12th IEEE International Conference on

Engineering Complex Computer Systems (ICECCS 2007). Washington, DC,

USA: IEEE Computer Society, 2007, pp. 47–55.

[83] A. Deutsch, L. Sui, and V. Vianu,“Specification and Verification of Data-driven

Web Services,” in PODS ’04: Proceedings of the twenty-third ACM SIGMOD-

http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt20/
http://www.eclipse.org/emft/projects/jet/
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.omg.org/cgi-bin/doc?ptc/2007-07-07
http://www.borland.com/us/products/together/index.html
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

BIBLIOGRAPHY 43

SIGACT-SIGART symposium on Principles of database systems. New York,

NY, USA: ACM Press, 2004, pp. 71–82.

[84] E. D. Sciascio, F. M. Donini, M. Mongiello, and G. Piscitelli, “AnWeb: a

system for automatic support to web application verification,” in SEKE ’02:

Proceedings of the 14th international conference on Software engineering and

knowledge engineering. New York, NY, USA: ACM, 2002, pp. 609–616.

[85] C. Bellettini, A. Marchetto, and A. Trentini, “TestUml: User-Metrics Driven

Web Applications Testing,” in SAC ’05: Proceedings of the 2005 ACM sym-

posium on Applied computing. New York, NY, USA: ACM Press, 2005, pp.

1694–1698.

[86] Eclipse Foundation, “Eclipse Modeling Framework Project (EMF): Validation

Framework,” 2008. [Online]. Available: http://www.eclipse.org/modeling/

emf/?project=validation

[87] J. Wright, “Towards an Interactive Web Modelling Language,” in Proceedings

of the 2007 SIENZ Workshop, Auckland, New Zealand, 2007.

[88] Business Rules Group, “Defining Business Rules – What Are They Really?”

Tech. Rep., 2001. [Online]. Available: http://www.businessrulesgroup.org/

first paper/br01c0.htm

[89] Dean Wampler, “Cat Fight in a Pet Store: J2EE vs. .NET,” ONJava.com,

Tech. Rep., 2001. [Online]. Available: http://www.onjava.com/pub/a/

onjava/2001/11/28/catfight.html

[90] S. D. Martino, F. Ferrucci, C. Gravino, and E. Mendes,“Comparing Size Mea-

sures for Predicting Web Application Development Effort: A Case Study,”

ESEM 2007: First International Symposium on Empirical Software Engineer-

ing and Measurement, pp. 324–333, 2007.

[91] E. Mendes, S. D. Martino, F. Ferrucci, and C. Gravino, “Cross-company vs.

single-company web effort models using the Tukutuku database: An extended

study,”Journal of Systems and Software, 2007.

[92] P. Eykhoff, System Identification, Parameter and State Estimation. London:

Wiley, 1974.

http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/modeling/emf/?project=validation
http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://www.businessrulesgroup.org/first_paper/br01c0.htm
http://www.onjava.com/pub/a/onjava/2001/11/28/catfight.html
http://www.onjava.com/pub/a/onjava/2001/11/28/catfight.html

BIBLIOGRAPHY 44

[93] D. E. Millard and M. Ross, “Web 2.0: Hypertext by any other name?” in

HYPERTEXT ’06: Proceedings of the seventeenth conference on Hypertext

and hypermedia. New York, NY, USA: ACM, 2006, pp. 27–30.

	Abstract
	Introduction
	Research
	Research Questions
	Major Contributions
	Research Method

	State of the Art
	Existing Languages
	WebML
	UWE
	UML Extensions
	Older Languages
	Formal Models
	Commercial Approaches

	Frameworks
	Other Literature
	New Functionality
	Our Critical Review
	Summary

	Enabling Technologies
	Models
	Metamodels
	Metamodel Support
	Transformations and Code Generation
	Verification

	Progress
	Publications
	Future Direction
	Final Thesis

	Glossary
	Interactive Web Applications
	Web Application Requirements
	Final Thesis Structure

