
1

Use Cases for Rich Internet Applications

Jevon M. Wright, Jens Dietrich

School of Engineering and Advanced Technology,
Massey University, Palmerston North, New Zealand

j.m.wright@massey.ac.nz, j.b.dietrich@massey.ac.nz

Abstract. In order to define the functionality of Rich Internet Applica-
tions (RIAs), we first need to investigate the use cases presented by new
technologies such as AJAX. In this report we detail a comprehensive set
of use cases that covers most of the functionality available in RIAs, and
document them in a standard use case format.

Current version: April 15, 2009

1 Background

As part of the research in defining modelling languages for RIAs, an important
step was to identify the requirements presented by these types of web applica-
tions. This involved a study of existing RIAs to identify their common concepts,
and the functionality within each application, enabled by new technologies such
as AJAX [1]. These functionalities were summarised into a selection of use cases,
which are presented below in a standard use case format.

This is similar to previous work in evaluating the expressiveness of existing
modelling languages, in terms of hypermedia concepts [2], basic web application
concepts [3], and comparing the implementation of a conference system [4]. This
white paper differs in that we systematically define the use cases of Rich Internet
Applications, which was then used to evaluate existing modelling languages [5].

More information on this modelling language for RIAs, including technical
details of a benchmarking application satisfying these use cases, is available
online at http://openiaml.org.

2 Actors

Without going into too much detail, the actors involved in these use cases are
described below. A simple UML use case diagram showing the relationships
between actors is provided in Figure 1.

– Visitor: an anonymous visitor to the application.
– User: a logged in/authorised Visitor.
– Developer: the developer of the site. Does not have to be a User.
– Administrator: a site administrator, who is also a Developer.

http://openiaml.org


2

Fig. 1. Use Case Actors

– Client: also known as a Browser; the user interface running on the Visitor’s
machine, such as Firefox or Internet Explorer.

– Server: the application host, such as Apache httpd.
– Remote Server: another application host, separate from the Server.
– Software: separate application software running on the same machine as

the Client, but not commonly used to browse the Internet.
– Device: a separate piece of hardware, such as a mobile phone.

3 Use Cases

We derived our use cases from a study of existing web applications (as mentioned
in our benchmarking paper [6]); in particular, attention was focused on the
following sites:

1. Gmail: Web-based e-mail by Google.
http://www.gmail.com

2. Calendar: Google Calendar, a collaborative online calendar.
http://calendar.google.com

3. Reader: Google Reader, an offline-enabled feed reader.
http://reader.google.com

http://www.gmail.com
http://calendar.google.com
http://reader.google.com


3

4. Docs: Google Docs, a collaborative office suite.
http://docs.google.com

5. Last.fm: A social network-enabled music site.
http://www.last.fm

6. Pages: Google Page Creator, an online web publishing suite.
http://pages.google.com

7. Facebook: A social networking platform.
http://www.facebook.com

These use cases are presented in a standard use case format. It appears that
they can be loosely grouped into subject areas (e.g. database-driven, events, user

interface, security et al.), and in our benchmarking paper where we fully define
the requirements of RIAs, we do exactly this.

http://docs.google.com
http://www.last.fm
http://pages.google.com
http://www.facebook.com


4

UC-01 View Data

Description A website visitor can view a list of products on a website. This
information is stored in a relational database.

Preconditions A database exists; a list of products exists in the database

Actors Visitor, Server

Normal Sequence

1. The Visitor requests a list of products in the database
2. The Server connects to the database and lists all available

products on one page

Postconditions

Exceptions

1. There are no products in the database; either an error is
thrown or an empty list is displayed

2. The database cannot be accessed; an error message is dis-
played

Comments Well supported in existing systems; a basic requirement of
database-driven websites



5

UC-02 Update Data

Description A user can update their user account details on a website.
Their account details are persistently stored in a relational
database.

Preconditions A User has a user account on the website/database and is
logged in (see User Authorisation)

Actors User, Server

Normal Sequence

1. The User requests the Edit User Account page
2. The Server presents the Edit User Account page, which

contains “name” and “password” fields
3. The User changes the name displayed in the “name” field
4. The User submits the page back to the server
5. The Server changes the “name” of the current User to the

value provided by the User
6. The User is redirected to the home page

Postconditions

Exceptions

1. The User does not have the permissions to edit their user
account (e.g. the account is blocked); an error message is
displayed

2. The database cannot be accessed; an error message is dis-
played

Comments See View Data



6

UC-03 Pagination

Description A website visitor can view a list of products on the website.
If there are more than 10 products, they are displayed in a
pages, with first, previous, next, last buttons.

Preconditions Preconditions in View Data

Actors Visitor, Server

Normal Sequence

1. The Visitor requests a list of products in the database
2. The Server connects to the database
3. There is more than 10 items; the Server displays the first

10 items, along with buttons to navigate forwards and
backwards

4. The Visitor selects the navigation button to go forwards
or backwards:
(a) The Server changes the range of products currently

displayed
(b) The Server displays the new list to the Visitor, with

the navigation buttons updated to show the new po-
sition

Postconditions

Exceptions

1. Exceptions in View Data
2. The Visitor tries to navigate outside of the valid range;

the result is restricted to the nearest bound page (i.e. first
page or last page)

3. The list of products change whilst the user is browsing the
pages; the Server ignores the change

Comments

1. Web applications may refresh the list and navigation but-
tons using AJAX technology [1]

2. If the list of products may change, the Server may wish
to inform the user, store the initial results in memory, or
display the updated list anyway



7

UC-04 User Action Auditing

Description For auditing purposes, any edit or delete a user makes to a
persistent data store or object will be logged to a logging table.

Preconditions

1. A persistent data store or object is marked as auditable
2. There is a logging data store to populate with auditing

information
3. The User is authenticated

Actors User, Server

Normal Sequence

1. The User performs an action
2. The Server requests to edit or delete a value in the data

store or object
3. The Server makes a copy of the change in the database in

the logging data store, along with the current User details
and the time

4. The original data store or object is edited or deleted, and
execution resumes

Postconditions

Exceptions

Comments

1. The “copy of the change” may be an entire copy, or only
the delta change (diff )

2. Auditing the actions of anonymous users (Visitors) could
also be supported

3. Systems tend to lack support for modelling cross cutting
concerns like these; this could be implemented through
point-cut like features on the design level with stereo-
types/naming patterns, or an implementation solution like
Java Servlet filters



8

UC-05 Debug Mode

Description For debugging purposes, complex operations may have support
for debug statements interspersed in the code.

Preconditions

1. Debugging statements are dispersed throughout the ap-
plication

2. Administrators can turn on/off debug mode
3. Administrators can change the current level of debug mes-

sages recorded
4. A debugging log exists

Actors Administrator, Server

Normal Sequence

1. The Administrator turns on the Debug mode
2. For every debugging/logging statement in the code exe-

cuted by the Server,
(a) If the debug statement is covered by the current debug

level,
(b) The statement is logged into the debug log by the

Server along with the current time
3. This continues until the Administrator turns off the Debug

mode

Postconditions

Exceptions

1. The debugging table does not exist; it is created or an
error message is sent to the Administrator and debugging
mode is temporarily turned off

2. the debugging table cannot be written to; an error message
is displayed to the Administrator and debugging mode is
temporarily turned off

Comments

1. Debugging may slow down execution
(a) How to toggle debug mode without restarting the ap-

plication?
2. See User Action Auditing for an alternative debugging

method



9

UC-06 Server Transaction Support

Description A bank customer uses a web application to transfer money.
The transaction should only succeed if every aspect of the
transfer succeeded; otherwise the transaction should be rolled
back.

Preconditions The system is in a consistent state; the web application repre-
sents a banking application

Actors User, Server

Normal Sequence

1. The User submits a transfer request
2. The Server starts the transaction
3. The Server deducts the amount from the source account
4. The Server adds the amount to the destination account
5. The operation is logged to a logging table (optional)
6. The Server checks to make sure all operations succeeded
7. The Server commits the transaction

Postconditions The system is in a consistent state

Exceptions

1. Step 3, 4 or 5 fail; the transaction is rolled back
2. The operation does not reach to Step 7; the transaction is

rolled back after a specified timeout time

Comments Many web applications are front-ends for transactional sys-
tems



10

UC-07 Local Data Storage

Description A shopping cart is implemented on a User’s client, with the
shopping cart data submitted to the Server only at checkout.

Preconditions The User is browsing a list of products (see View Data); the
Client can store data locally

Actors User, Client, Server

Normal Sequence

1. For each product the User wants to purchase,
(a) The User requests to add the product to their shop-

ping cart
(b) The Client stores the product addition to a local copy

of the shopping cart. This data is stored throughout
the entire session and not transmitted to the Server.

(c) The User can continue to purchase more products
2. The User requests to checkout their shopping cart
3. The Client submits the stored shopping cart data to the

Server
4. The Server takes the data stored from this shopping cart

and charges it to their account

Postconditions

Exceptions

1. The application loses network connectivity; the shopping
cart will likely be lost. See also Persistent Client Data

Comments

1. For client-side storage, technologies such as Javascript
memory, cookies, Java applets, URL rewriting and
browser filesystem storage could be used. This should be
transparent to all actors involved.

2. This could be modelled with stereotypes such as “server”,
“client”, “cacheable” etc

3. Important if client has unreliable connection (e.g. ad
hoc/wireless network)

4. Important if high level of system availability is required
(e.g., companies outsourcing office applications to web
based providers)

5. Technology wise, there are some development aiming at
this feature, e.g. Dojo Toolkit [7], Google Gears [8]

6. One potential implementation could be covered in
Store Data in Local Database



11

UC-08 Server Data Access

Description The User can download an e-mail data object (like an e-mail
draft) from the server to their client machine to work on

Preconditions There is an existing e-mail data object to work on, that exists
in a database

Actors User, Server

Normal Sequence

1. The User opens an editable page for the e-mail
2. The Client downloads the e-mail object from the Server
3. The User edits the e-mail without recontacting the Server;

this is achieved by editing the object in Client memory
4. The User is finished editing the e-mail, so submits it back

to the Server
5. The Client submits the changed object data to the Server
6. The Server reconstructs the object based on the Client

data and saves it back to the database

Postconditions The e-mail object is changed and saved back to the database

Exceptions

1. The browser or active Internet connection goes offline
while the user is editing the e-mail; the User should be
informed.

Comments

1. This is different to a User working on data stored exclu-
sively on their local machine, as in Persistent Client Data

2. Data accessed locally can be automatically saved through
Client Timer Support

3. See also Local Data Storage



12

UC-09 Persistent Client Data

Description An e-mail can be worked on, over many sessions, with the data
staying persistent on the client’s device

Preconditions

Actors User, Client, Server

Normal Sequence

1. The User starts writing an e-mail on their Client
2. The User closes the editing session
3. The Client saves a copy of the e-mail to some storage

device
4. After some time, the User re-opens the e-mail editing ses-

sion
5. The Client opens the saved copy and resumes editing
6. The User finishes their changes and submits the final copy

to the Server for delivery
7. The local copy of the e-mail is removed

Postconditions

Exceptions

1. After an extended period of time (e.g. a year) the data
may be lost

2. Stored data may be deleted by the User themselves (e.g.
clearing cookies)

Comments

1. Like in Store Data in Local Database, this should be
transparent to the actors involved

2. Could be implemented through technologies mentioned in
Store Data in Local Database

3. See Local Data Storage for client storage comments
4. E-mail delivery is covered in E-mailing Users



13

UC-10 Temporary Server Data

Description A user is working on an image editing client; the image needs
to be stored on the server, but only temporarily during the
editing session

Preconditions The User can upload an image to the Server

Actors User, Server

Normal Sequence

1. The User uploads an image to work on
2. The Server saves this image to a temporary storage device
3. The User performs editing operations on the image (e.g.

rotate, flip, add text, resize), which may take a long time
and transit over many pages

4. The Server keeps the changes and original images in tem-
porary storage

5. Once the User is finished, the final image is sent via e-mail
6. Once the session is over, or a new image is uploaded, the

temporary data is deleted or marked for deletion

Postconditions The image is not stored on the Server

Exceptions

1. The editing session is disconnected; the User may perma-
nently lose the temporary image, or the session could be
automatically restored (Restore Server Session)

Comments

1. The temporary server data could be stored either in files,
or in a database

2. The temporary data should be able to persist over server
reboots, though this may incur a performance penalty

3. E-mail delivery is covered in E-mailing Users



14

UC-11 Uploading Files

Description To send a file via e-mail, the user can upload a file to the
server, which is temporarily stored before being sent

Preconditions The User can upload a file to the Server

Actors User, Server

Normal Sequence

1. The User is creating an e-mail to send
2. The User attaches a file to the e-mail, by uploading a file

to the Server
3. The Server downloads the file from the User and saves it

in a temporary location
4. The Server informs the User the file has been attached

and is ready to send
5. The User submits the completed e-mail to the Server
6. The Server attaches the file(s) to the e-mail and sends the

e-mail

Postconditions

Exceptions

1. The temporarily uploaded file is removed unexpectedly;
the System displays an error message to the User, and has
to re-upload their file before they can continue sending the
e-mail

2. The uploaded file cannot be stored; the System displays
an error message to the User, and sends an error message
to the Administrator

3. The uploaded file is of an invalid or unexpected type; the
System displays an error message to the User, and the
temporary file is removed

4. The uploaded file is too big; the System displays an error
message to the User, and the temporary upload data is
discarded

Comments

1. The file must be able to persist over server reboots in this
situation; this addresses fault tolerance and availability

2. It may be useful to add a progress dialog to the file upload;
this could be accomplished by another service, Ajax +
Javascript, etc

3. E-mail delivery is covered in E-mailing Users



15

UC-12 Restore Server Session

Description While working on an image on the server, the User’s session is
disconnected; once the User returns, it is possible to continue
the previous session

Preconditions The User is authorised

Actors User, Server

Normal Sequence

1. The User is working on an image manipulation program
(see Temporary Server Data)

2. The session is disconnected prematurely, for example a
power failure on the User’s machine

3. The User returns to the website and re-authorises them-
selves

4.
5. The User requests to resume the existing session.
6. The User continues using the application with the old ses-

sion data

Postconditions The User is still authorised, and is using the same session data

Exceptions

1. The User requests to save the session data; the old session
data is saved into permanent storage for access later, and
a new session is started

2. The User requests the session data is destroyed; the old
session is removed and a new session is started

3. The old session is destroyed before the session can be re-
sumed; the session data will be lost

4. The old session is corrupted or loading the session would
result in an inconsistent system state; the User is informed
that they cannot reload it and must start a new one

Comments

1. Step 4 could be enhanced with a “preview existing ses-
sions” step, allowing the User to specify which sessions to
load or remove

2. This is similar to Microsoft Word’s recovery process
3. There would probably have to be a time limit to how long

sessions could be retained. Lost sessions could persist over
server reboots, if required.

4. Some session data may not be suitable for recovery, for
example, temporary authorisation with a bank transfer

5. (This is different to Firefox’s Restore Session; Firefox does
not actually restore the sessions, only the pages that were
in use. This use case is server-based.)

6. This would be a way to load and save data from sessions
active on multiple machines



16

UC-13 User Authorisation

Description A Visitor can log in with certain credentials to become an
authorised User

Preconditions A Visitor has a session (see Session Support); there is a list of
existing Users in the application

Actors Visitor, User, Server

Normal Sequence

1. A Visitor visits a website, and goes to the “login” page
2. The Visitor enters in a username and password, and sub-

mits the form to the Server
3. The Server checks their username and password against

the list of existing user accounts, and verifies that the
account exists

4. The Server updates the Visitor’s session to indicate that
they are an authorised User

5. The Visitor becomes a User, and is redirected to a User-
only page

Postconditions

Exceptions

1. the entered credentials are invalid; the Visitor is informed
and is prevented from continuing

2. The User account found is blocked from authorising; an
error message is displayed to the Visitor

3. The Visitor loses its session while authorising; a new Ses-
sion is created, or an error message is displayed to the
Visitor, informing them they cannot currently login.

Comments

1. This is a basic requirement of database-driven websites
2. If the user cannot login, the Visitor can either register

a new account, or retrieve their lost information (e.g.
Password Reset)

3. This is usually not directly modelled in web applications
but provided as service

4. However, the access rights controlling other resources must
be defined

5. The registration of new User accounts is covered in
Account Registration

6. User authentication can also occur through Basic or Di-
gest HTTP authentication



17

UC-14 Password Reset

Description A user cannot login with their given credentials; they know
their username, but not their password. They choose to reset
their password.

Preconditions The user account has an associated e-mail address

Actors Visitor, Server

Normal Sequence

1. The Visitor asks the Server to reset their password for a
given username

2. The Server resets the User’s password to a random pass-
word.

3. The Server e-mails this random password to the User’s
e-mail account.

4. The Visitor receives this e-mail, and uses this new pass-
word to login as a User, using User Authorisation.

5. The User is asked to change their password before they
can continue with their session.

Postconditions

Exceptions

1. The password e-mail cannot be sent; an error message is
displayed to the User, and the Administrator is notified of
the problem.

2. The User does not change their password in Step 5; this
step will repeat before User Authorisation can complete.

Comments

1. The “random password” may be implemented through a
secret link which does not affect the user account’s pass-
word at all.

2. In Step 2, the Server can request for additional account
information, e.g. asking a secret question stored with the
account.



18

UC-15 Session Support

Description Visitors to the website are tracked over the stateless HTTP
protocol with an implementation of sessions.

Preconditions

Actors Visitor, User, Server

Normal Sequence

1. The Visitor visits the web application for the first time.
2. The Server creates a new session for the Visitor, and links

this session to the current Visitor
3. After a period of inactivity, the session is lost.

Postconditions

Exceptions

1. The Visitor cannot be tracked using existing session tech-
nologies; an error message is displayed to the Visitor and
cannot continue using the web application.

2. The Visitor is authenticated as a User when the session is
lost (Step 3); the Visitor will have to re-authenticate as a
User (User Authorisation).

Comments Sessions can be implemented through many technologies, such
as cookies, IP tracking, or URL rewriting. The choice of tech-
nology should be transparent to the actors.



19

UC-16 Account Registration

Description To use a shopping account properly, a Visitor needs to register
their account details with the website to create a User account.

Preconditions

1. Visitors can create new User accounts
2. User accounts can be stored in a data store
3. The current Visitor is not authenticated as a User

(User Authorisation)

Actors Visitor, User, Server

Normal Sequence

1. The Visitor requests to create a new User account
2. The Server responds with an application form, which in-

cludes fields for e-mail address, username, and password.
3. The Visitor enters in their details and submits it to the

Server.
4. The Server creates the new User account, and marks it

to disabled. The User is e-mailed instructions on how to
activate their account.

5. The Visitor receives the e-mail instructions, and follows
the instructions to activate their account.

6. The Server marks the account as enabled, and redirects
the Visitor to the login page (User Authorisation).

Postconditions A new User account has been created

Exceptions

1. Invalid email address is submitted; the Visitor is informed
of the error and must correct the application form.

2. Email cannot be delivered; the Visitor is either notified
immediately, or the registration is ignored.

3. The given username (or email address) already exists; the
Visitor is informed of the problem, and is given the option
to choose a different username, or attempt to login with
the username (in case they had forgotten they already had
an account).

4. The user does not follow through on the account activa-
tion; the account is automatically deleted after a period
of inactivity.

5. Erroneous account details are submitted, e.g. the wrong
e-mail address; the delivered e-mail includes instructions
on how to unsubscribe or cancel the account.

Comments

1. It is standard practice to encrypt the user password with
a one-way hash with a hidden salt.

2. It is becoming acceptable for e-mail addresses to fulfill the
role of usernames.

3. It is becoming less acceptable to force registration on users
for trivial actions like downloading and submitting orders.

4. For some websites, forced account activation (steps 4-6)
may not be necessary; this is generally only used to reduce
spam or fake accounts.



20

UC-17 Automatic User Authorisation

Description Instead of having to enter in their user details on every website
visit, they are automatically logged in.

Preconditions Preconditions in User Authorisation

Actors User, Client, Server

Normal Sequence

1. As the User is authenticating (User Authorisation), they
select an option to automatically log in (“remember me”)

2. The Server stores re-authentication data on the Client
3. The User leaves the website; the session is closed, but the

stored data remains
4. The User returns to any page on the website
5. The Server automatically detects that the User has re-

authorisation data; this information is verified on the
Server, and if successful, the user is automatically re-
authorised

Postconditions Postconditions in User Authorisation

Exceptions

1. The re-authorisation data is incorrect; the user is not
logged in, the re-authorisation data is removed, and an
error message is displayed to the Visitor.

2. The re-authorisation data cannot be stored on the Client;
an error message is displayed to the Visitor.

Comments

1. Re-authorisation data is usually stored in cookies.
2. When the user is automatically logged in, a message is

displayed once to the User, informing they have automat-
ically been logged in.

3. A more modern method of storing this data is not to store
the username and password on the server; but instead,
store a “login key” on both the server and the client, which
is used to verify the login. This also has the added benefit
of surviving password changes, but has the problem of
reduced security of access from compromised machines,
unless existing login keys can be revoked.

4. Generally sites using automatic authorisation also re-
request for the user’s password before embarking on crit-
ical operations, such as changing user account details or
deleting their account.

5. Some sites, such as banking sites, should never have auto-
matic authorisation enabled.



21

UC-18 Static Views (HTML)

Description A calendar web application wishes to publish an HTML-only
version of a calendar

Preconditions The calendar page can be represented purely in HTML

Actors Visitor, Server

Normal Sequence

1. A Visitor requests the HTML-only version of a calendar
page

2. The Server constructs the page by removing all scripting
from the page

3. The Visitor receives the HTML-only page
4. For a User to add events to the calendar,

(a) The User clicks the Add Event button, which loads
the event entry page

(b) The User fills in the form, with no help from
Javascript or dynamic technologies

(c) The User submits the form, and the Server saves the
new event

Postconditions

Exceptions

Comments

1. Useful for users which do not have Javascript enabled, or
old/slow/incompatible browsers

2. It may be probably possible to convert any rich features
to HTML?

3. If necessary, the Server could emulate a user session on
the server itself. An emulated session could assist in de-
velopment of features that are not globally supported, e.g.
ActiveX features emulated for Firefox users

4. May be related to Multiple Browser Support
5. See also Backwards-Compatible Scripting



22

UC-19 Asynchronous Form Validation

Description Form validation can occur via asynchronous communication
with the server; see Client Form Validation for a Client-only
version

Preconditions Preconditions in Client Form Validation

Actors Visitor, Client, Server

Normal Sequence

1. The Visitor is filling out an entry field in a form (e.g. an
e-mail address in a registration form)

2. Once the field is filled out, the Client submits the value
to the Server for validation

3. If the Server finds the input is invalid (e.g. the address is
malformed), it returns the result to the Client

4. The Client graphically highlights the field, and displays
a message next to it informing the Visitor the input is
invalid, why it is invalid, and how to fix it (“this e-mail
address already exists in our database; would you like to
login instead?”)

5. The Visitor corrects the error (e.g. a valid email address)
6. The input is submitted again to the Server, and it is now

correct; the field highlight and error message is removed

Postconditions Postconditions in Client Form Validation

Exceptions

1. The corrected value (Step 6) is incorrect; the process goes
back to Step 3

2. The Client cannot contact the Server for validation; a mes-
sage may be displayed to the Visitor, but validation should
also occur on the Server after submission

Comments

1. See Client Form Validation comments
2. Care must be taken to ensure that the connection is not

saturated with validation requests (e.g. validating on every
key stroke)

3. In some cases (e.g. unique usernames), the server result
could be cached locally, so multiple inputs of the same
data does not re-poll the server

4. Sometimes, this depends on the capability of the client,
and it is desirable to decide where to validate a form at
request time

5. Even though validation may occur on the client, it still
must occur on the server before any data is retained



23

UC-20 Client Form Validation

Description Fields can be validated on the Client via Javascript

Preconditions There is a field that needs to have a valid value

Actors Visitor, Client

Normal Sequence

1. The Visitor is filling out a destination e-mail address form
(sending an e-mail)

2. Once the field is filled out, the e-mail address is parsed on
the Client for validity (perhaps through regular expres-
sions)

3. If the address is invalid:
(a) The field is highlighted and an error message is dis-

played, and possibly a way to fix the problem (“this
e-mail address is invalid; there is no @ character.”)

(b) The Visitor goes back to the invalid field and corrects
the problem

(c) The Client re-checks the field for validity, and it is
valid

(d) The highlight around the field is removed, and the
error message is removed

Postconditions The field has a valid value

Exceptions

1. The Client does not have Javascript enabled, or val-
idation cannot occur; an error message is displayed
to the User, and validation must occur on the Server
(Server Form Validation)

Comments

1. See Server Form Validation comments
2. All Client-side operations and validation must be treated

as insecure, and all validation must be re-executed on the
Server

3. In some cases, it may be appropriate to disable sending
the form until all attributes in the form are valid

4. The client and server form validations could be integrated
together into one set of rules

5. The key difference between this use case and
Client Form Validation is that this use case only oc-
curs once the entire form is completed



24

UC-21 Server Form Validation

Description When a form is submitted to the Server, the Server can assess
the form for validity; if it is invalid, the form is redisplayed to
the Visitor with the errors highlighted

Preconditions There is a field in a form that needs to have a valid value

Actors Visitor, Server

Normal Sequence

1. The Visitor is presented with a user registration form
2. The Visitor fills out the form with incorrect data and sub-

mits it to the server
3. The Server validates all the inputs of the form, and recog-

nises that some of the inputs are invalid (e.g. malformed
e-mail address, illegal username)

4. The Server redirects the Visitor back to the form entry
page, but highlights all the incorrect fields, and displays a
list of problems with the submission

5. The Visitor corrects all the values on the form, and resub-
mits the form to the Server

6. The Server re-validates all the inputs of the form, and
recognises that they are all valid. The registration is saved
to the database.

Postconditions The field has a valid value

Exceptions

1. The Server cannot carry out the validation; an error mes-
sage is displayed to the User and Administrator, and ex-
ecution is not allowed to continue

Comments Instead of simply saying “this input is invalid”, the Server
could respond with a list of possibilities (“did you mean X?”)



25

UC-22 Multiple Browser Support

Description The application can be rendered identically to multiple
browsers, or take advantage of browser-specific features

Preconditions

Actors Client, Server

Normal Sequence

1. The Client requests a page
2. The Server identifies the browser from the user request, in

this case Internet Explorer 6:
(a) The Server constructs a page response that is stan-

dard to all target browsers
(b) The Server applies fixes to solve the differences in ren-

dering techniques, for example Internet Explorer 6’s
incorrect CSS float model

(c) The Server sends this result to the Client

Postconditions

Exceptions

1. No user agent can be identified; it sends the standard page
response (Step 2a)

2. The user agent is incorrectly identified by the Server;
there should be a way for the Visitor to change the target
browser, but it should be as transparent as possible

Comments

1. The current user agent can be identified using the stan-
dard HTTP headers, or inline Javascript/CSS code.

2. This could be cleanly implemented with a conditional pro-
cessing instructions [9]

3. This could also lend itself to multiple output formats:
(a) XML + XSL (client-side)
(b) XHTML (1.0, 2.0)
(c) HTML (3.0, 4.01, 5.0)
(d) etc.

4. This technique can be useful to handle different mobile
phone clients (Mobile Phone Support)



26

UC-23 Mobile Phone Support

Description Website visitors using a mobile phone can automatically be
redirected to a design specifically created for mobile users

Preconditions The Visitor is visiting a normal web application with a mobile
phone; a web application designed for mobile phones exist

Actors Visitor, Server

Normal Sequence

1. The Visitor requests a page on the website
2. The Server realises the user is on a mobile phone
3. The Server redirects them to the mobile phone version of

the same web application

Postconditions The Visitor is browsing the web application designed for mo-
bile phones

Exceptions

Comments

1. Identification of mobile phones can be achieved in the
same way as Multiple Browser Support

2. Mobile pages tend to be smaller with less content than PC
equivalents

3. Mobile pages also tend to have less graphics and limited
Javascript support

4. The Visitor should be able to disable this automatic redi-
rection if desired

5. The use case Multiple Browser Support can help render-
ing the same mobile site to multiple implementations of
mobile platforms



27

UC-24 Remote Data Source

Description A calendar application has been asked to import another cal-
endar (in iCal format) from an external web server.

Preconditions The application can import iCal calendar sources; calendar
events can be stored in a local database

Actors User, Server, Remote Server

Normal Sequence

1. The User has requested to import an external iCal file
2. The Server contacts the Remote Server and requests the

iCal file
3. The Server downloads and parses the iCal file
4. For each event identified,

(a) It checks to see if the event already exists in the
database

(b) It adds the event to the database

Postconditions The remote calendar has been loaded into the local database

Exceptions

1. The Server cannot access the Remote Server; an error mes-
sage is displayed to the User

2. The iCal file cannot be parsed; an error message is dis-
played to the User

3. A single iCal event cannot be parsed; the event is ignored,
and a message is displayed to the User

4. An event already exists in the database; it can either be
ignored, or updated with the new event data

Comments

1. This does not cover removing events that no longer exist
in a remote source

2. This process occurs only once; for accessing a remote data
source regularly, see Active Remote Data Source



28

UC-25 Active Remote Data Source

Description A calendar application has been asked to continuously import
iCal events from an external web server, actively keeping the
local calendar updated at all times

Preconditions

1. Preconditions in Remote Data Source
2. The Server has a registered remote data source for a given

calendar
3. The Server has calendar data which has not been updated

for more than 24 hours

Actors Server, Remote Server

Normal Sequence

1. The Server locates the remote data source
2. The Server uses Remote Data Source to update the data
3. The Server marks the current time as the last calendar

update

Postconditions Postconditions in Remote Data Source

Exceptions

1. Exceptions in Remote Data Source

Comments

1. See Remote Data Source
2. In some cases it can be useful to force a data refresh out-

side of the regular interval
3. For data which rarely changes, the Server could automat-

ically reduce its access interval
4. Multiple requests to the same data source could be cached

locally
5. This process could be aggregated into one automated pro-

cess/server



29

UC-26 Data Feeds

Description The application can provide external data feeds about new
blog entries to external clients/servers via RSS.

Preconditions Blog entries can be fed through an RSS feed [10]

Actors Server, External Server

Normal Sequence

1. An External Server requests an RSS feed of the most re-
cent blog entries

2. The Server compiles an RSS feed of the most recent blog
entries and returns it to the External Server

Postconditions

Exceptions

1. The RSS feed is requested too many times by one client;
the client is automatically denied access for a few hours,
and the administrator is notified, to prevent denial of ser-
vice attacks

Comments

1. This could be generalised into a specific type of
Web Service request

2. Some data feeds could use emulated user permissions, see
below

3. Modelling may support RSS as general mechanism, i.e. to
have modelling elements that can extract RSS summaries
from resources, and to provide an abstraction from con-
crete RSS dialects (RRS1.0, RSS2.0, ATOM). This needs
to be customisable, w.r.t. display, security, etc.



30

UC-27 Web Service

Description The application can provide external functionality support to
its services via web service communication protocols such as
SOAP [11], such as converting currency.

Preconditions A web service API is published for the local web application;
the web application has exchange rates between US$ and Yen.

Actors Server, External Server

Normal Sequence

1. An External Server requests a web service function call
via SOAP, to convert US $50 to Yen.

2. The Server retrieves its exchange rate for US$ and Yen,
and converts this into a number

3. The Server responds to the External Server with the result
using the SOAP framework

Postconditions

Exceptions

1. The External Server does not have the permissions to call
this web service; the request is denied

Comments

1. If this web service also calls a web service itself, we must
make sure to prevent infinite loops of web service calls

2. Alternative web service communication protocols includes
JSON [12] and the outdated XML-RPC protocol



31

UC-28 Back/Forwards Button Control

Description The application can control where the back and forward but-
tons go, even on applications which do not change the browser
history by default

Preconditions The User is using an e-mail application which is entirely ren-
dered on the client

Actors User, Client

Normal Sequence

1. The User is in the e-mail inbox page
2. The User clicks on an e-mail, which replaces the view with

the e-mail contents
3. The Client adds the e-mail inbox page to the browser his-

tory
4. The User clicks on the reply link, which adds a reply box

to the bottom of the e-mail, and redirects focus to the
bottom of the email

5. The Client adds the e-mail page to the browser history
6. The User enters in a reply
7. The User clicks the inbox link
8. The User redirected to the e-mail inbox page

Postconditions

Exceptions

1. Step 4, the user clicks Back; the User is taken to the e-mail
inbox page, and the e-mail page is the next page

2. Step 6, the user clicks Back; the User is taken to the e-mail
page, and the reply box is shown in the next page

3. Step 8, the user clicks Back; the User is taken to the e-mail
page, with the last reply still in the content field. The e-
mail inbox is shown in the next page, but the user is asked
if they want to lose their changes if they go forwards.

Comments

1. If the User ended up sending the e-mail (after Step 6), go-
ing back to the reply box would have presented an empty
reply

2. An application should always have back button support;
disabling this button causes great user stress

3. Sometimes going back may require either the old view to
be displayed (writing a reply), or the view refreshed (e-
mail inbox), depending on the situation



32

UC-29 Opening New Windows

Description The User can open links in new windows, even if the applica-
tion is solely rendered via the Client

Preconditions

Actors User, Client

Normal Sequence

1. The User is in the e-mail inbox page
2. The User clicks on an e-mail, but asks for it to be opened

in a new tab/window
3. The e-mail is displayed in the new tab/window by the

Client, with no previous browser history

Postconditions

Exceptions

1. The browser cannot open a page in a new window
or tab; the page is opened in the current window in-
stead, and the browser history is affected accordingly (see
Back/Forwards Button Control)

Comments

1. Some links should not be allowed to open in new windows
(e.g. actions), but these should not be rendered as text
links, but as buttons

2. Also refer to Pop-up Window Support



33

UC-30 Client-Side Application

Description The entire application user interface can be rendered by
Javascript and XML by the Client, instead of HTML from
the Server

Preconditions

Actors User, Client, Server

Normal Sequence

1. The User requests the e-mail website
2. The Client downloads the Javascript to render the page
3. The Client executes the Javascript, which downloads an

XML file of inbox e-mails
4. The Client draws the user interface, using the information

from the XML
5. The User can interact with this user interface like any

normal website, except most operations are run on the
Client, not on the Server

Postconditions

Exceptions

1. The Javascript cannot be executed, or the user interface
cannot be rendered in this browser; the User is redirected
to a non-Javascript page

2. The XML cannot be loaded; the User is redirected to a
non-Javascript page

3. The loading process takes too long; the User is redirected
to a non-Javascript page

Comments

1. This is not an example of a browser displaying
XML+XSL; it is the use of Javascript and XML data is-
lands to construct an HTML DOM in memory at run time
on the client

2. Requires Back/Forwards Button Control
3. This naturally tends towards storing some data on

the Client side, and operating on it there; see
Local Data Storage



34

UC-31 Communication with Software

Description A web application can send messages to external software ap-
plications

Preconditions An e-mail site has a chat service; an external software appli-
cation is also connected to this chat service

Actors User, Server, Software

Normal Sequence

1. A User is logged into a chat program, with the desktop
Software

2. On the Server, the User receives a new e-mail message
3. The Server sends a notification to the desktop Software

about the new e-mail, which renders as a pop-up box
4. The User clicks on the notification
5. The User is sent to a special URL using their Client, which

opens in a new browser window
6. The Server displays the e-mail

Postconditions The User is viewing the received e-mail

Exceptions

1. The Software cannot open a new browser window; an error
message is displayed to the User

2. The authentication between the User and the Software
expires before the Server can re-authenticate the User;
the process is stopped at Step 6, and the User is asked to
re-authenticate themselves

Comments

1. Usually when the notification is clicked, the User is sent
to a special URL, which is constructed to automatically
authenticate the user (User Authorisation) if they are not
already authenticated

2. Very common in chat programs integrated with e-mail
clients, e.g. Google Talk and GMail, or MSN Messenger
and Hotmail

3. The notification (Step 3) could either be passive (polling)
or active (an open connection is sent notifications)

4. Passive polling can be achieved using a Web Service by
the Software



35

UC-32 Mobile Phone Communication

Description A user can get notifications via mobile phone (SMS)

Preconditions

1. The web application receives e-mails
2. The User has a registered mobile phone number, and the

number is contactable from the Server

Actors User, Server, Device (mobile phone)

Normal Sequence

1. On the Server, the User receives a new e-mail
2. The Server sends a notification message to the User via a

mobile network
3. The mobile network transports the notification to the

User’s mobile phone
4. The Device (mobile phone) receives the notification and

displays the message to the User

Postconditions

Exceptions

1. The mobile network is down, or cannot be contacted; the
User does not receive the notification until the network is
back up, or the notification is lost

2. The mobile number no longer exists, or does not support
messaging; the Server removes the association with the
User and informs the User the next time they log in

3. The mobile phone is offline; the User will receive the mes-
sage when they next turn on their phone

Comments

1. On some networks, it may cost to send messages; the ap-
plication may need to maintain some sort of user account
balance

2. The notification message sent could include a URL, simi-
lar to Communication with Software, which the User can
open and browse with their mobile phone



36

UC-33 E-mailing Users

Description The User can be sent e-mails

Preconditions The web application supports internal messages; the User has
requested to be e-mailed about new messages sent internally

Actors User, Server

Normal Sequence

1. In the web application, the User is sent a new internal
message

2. The Server composes an e-mail to be sent to the User,
including the internal message

3. The Server sends the e-mail
4. The User receives the e-mail
5. The User reads the internal message included

Postconditions

Exceptions

1. The e-mail bounces immediately (invalid address); the no-
tification service is disabled, and the User is notified the
next time they log in

2. The e-mail bounces after a while (cannot contact server);
the message is discarded or added to a queue to retry later

3. The User never receives or downloads the e-mail; nothing
happens

Comments

1. This is a basic requirement of database-driven websites
2. One important aspect of sending e-mail messages is man-

aging bouncebacks, and the lifecycle of e-mail accounts;
this needs to be considered in any serious web application

3. Also related to Mobile Phone Communication, emails are
another example of an event delivery mechanism



37

UC-34 E-mail Unsubscription

Description Any Visitor can unsubscribe their e-mail address from the web
application, to prevent any further e-mails

Preconditions The web application can send e-mails (E-mailing Users)

Actors Visitor, Server

Normal Sequence

1. The Visitor requests to be unsubscribed from all future
e-mails to a particular address

2. The e-mail address is sent a confirmation e-mail, along
with instructions on how to reverse the process

3. The Visitor clicks the link in the confirmation e-mail to
disable all future e-mails

4. The Server adds this e-mail address to a “do not contact”
list

5. Any future time an e-mail is being sent out:
(a) The destination address is checked against the list of

people to not contact
(b) If the address exists in the invalid list, an error mes-

sage is displayed, and the message is discarded

Postconditions The Visitor is never e-mailed again

Exceptions

1. The e-mail address has never been contacted before; the
e-mail address is still added to the “do not contact” list

2. There are some e-mails in the e-mail queue for the user;
these e-mails are deleted once confirmation has been given
by the user, and if possible, error messages will be dis-
played to the Administrator

Comments

1. The ability to permanently unsubscribe from web services
is important to gain user trust, and also satisfy privacy
regulations

2. Any further e-mails to this user must be sent manually,
and cannot be sent by the system

3. The Visitor may, in the future, remove themselves from
the “do not contact” list, by following the instructions in
the e-mail in Step 2, or contacting the administrators

4. Steps 2 and 3 might not be possible, depending on privacy
requirements



38

UC-35 Persistent Errors

Description If an error occurs during an operation (such as sending an e-
mail to an invalid address) when the source of the operation
cannot be contacted, the error message is stored until later

Preconditions The system can send e-mails (E-mailing Users); error mes-
sages can be stored by the Server for particular Users

Actors User, Server

Normal Sequence

1. The User tries to send an e-mail to an address that doesn’t
exist

2. The e-mail is put into a local queue on the Server while it
is trying to be sent

3. The User leaves the web application
4. The e-mail bounces back to the Server as undeliverable;

the Server stores an error message for the User
5. The User returns to the web application
6. The error message is displayed from the Server along with

the original message

Postconditions The error message is removed from the Server once displayed

Exceptions

1. The User never returns to the web application; nothing
happens

Comments The error message could also be delivered via e-mail to the
User



39

UC-36 User Content Security

Description Content can be shared between users, with specific permissions

Preconditions

1. There exist three Users: User 1, User 2, User 3
2. A User 1 has created and published a blog entry
3. User 2 and User 3 cannot usually access the blog entry

Actors User 1, User 2, User 3, Server

Normal Sequence

1. User 1 assigns reading rights to User 2
2. User 2 tries to view the blog entry
3. The Server checks the entry permissions and allows User

2 to view the entry
4. User 3 tries to view the blog entry
5. The Server checks the entry permissions, but displays an

error message to User 3 and does not let the User continue

Postconditions

1. User 2 can view the entry
2. User 3 cannot view the entry

Exceptions

1. User 2 views the blog entry, but then the rights are re-
voked; User 2 can continue to view the entry until the
page is closed

Comments Assigned permissions should be accessible and modifiable by
User 1



40

UC-37 Private User Content Security

Description A User can share private feeds to another Visitor, which em-
ulates the first User’s account to achieve the desired rights

Preconditions Preconditions in User Content Security

Actors User, Visitor, Server

Normal Sequence

1. The User shares a private URL with the Visitor to view
an RSS feed of all their blog entries

2. The Visitor visits this private URL without being authen-
ticated

3. The Server temporarily assigns the Visitor the rights of
the User, to allow them to view the request

4. The Server checks the entry permissions and allows the
Visitor to view the entry

Postconditions Postconditions in User Content Security

Exceptions

1. Exceptions in User Content Security
2. The User revokes or regenerates the private URL; the orig-

inal URL will no longer provide access

Comments

1. Often this is achieved by adding a special authentication
key to a request

2. If a third party discovers this private URL, they can gain
unauthorised access to this private data

3. Another common example is sharing a private calendar
with a friend, which creates a temporary connection with
very specific rights

4. Used in applications to share private data with other users,
or to integrate with external feed readers without requir-
ing separate authentication

5. This differs from User Content Security as that it does not
assign permissions to any particular registered User



41

UC-38 User Collaboration

Description Different users can work on the same calendar

Preconditions

1. An editable calendar is shared between two users, User 1
and User 2

2. Calendar data can be stored locally (Server Data Access)

Actors User 1, User 2, Server

Normal Sequence

1. User 1 goes to the shared calendar
2. User 2 goes to the shared calendar
3. User 1 adds a new event to the calendar
4. The new event is submitted to the Server
5. The Server notifies User 2 of the new event
6. User 2’s Client adds the new event to its model
7. User 2 edits the new event, changing the date
8. User 2 submits the change to the Server
9. The Server notifies User 1 of the new event

10. User 1’s Client updates the existing event in its model
with the changes

Postconditions The system state is consistent

Exceptions

1. User 1 and User 2 make a change at the same time on dif-
ferent events; both users are notified of each others change

2. User 1 and User 2 make a change at the same time on the
same event; the event is changed to the last update, and
both users are notified of the change

Comments

1. Steps 5 and 9 do not have to be instant; they could only
occur every 60 seconds, for example; but the core concept
of this is that it is interactive and realtime

2. Other examples of this include Writely, Spreadsheets



42

UC-39 Interactive Map

Description A visitor is given an interactive graphical map of the world,
which they can move around using their mouse

Preconditions A map can be rendered as an image; this image is broken up
into many smaller, separate pieces

Actors Visitor, Client, Server

Normal Sequence

1. The Visitor is displayed an image of part of a map
2. The Visitor uses the mouse to drag the map to the right
3. The Client moves the map image according to the mouse

movement
4. If the newly-revealed parts of the larger map image have

not been loaded yet:
(a) The Client requests the Server for the map parts
(b) The Server returns the image parts
(c) The Client displays the new images by replacing older

images in the map

Postconditions

Exceptions

1. The Client cannot contact the Server; an error message is
displayed, or a “missing image” is displayed

2. The Server does not have map imagery for the missing co-
ordinates; a “no image exists; zoom out” image is returned
instead

Comments

1. This allows for Clients to browse a large image by only
downloading the parts relevant to the current query

2. There must be some way to jump to specific co-ordinates
in the larger map, without having to browse the map first

3. The obvious example is Google Maps



43

UC-40 Drag and Drop

Description The user can use drag and drop to intuitively move e-mails
from one folder to another

Preconditions

Actors User, Client, Server

Normal Sequence

1. The User is displayed a list of e-mails in their inbox
2. The User uses the mouse to drag and drop an e-mail from

the inbox to the trash icon
3. While being dragged, a highlight of the e-mail is displayed

under the mouse cursor
4. When dropped, the Client:

(a) Contacts the Server to move the selected e-mail to the
trash

(b) Removes the selected e-mail from the inbox, and up-
dates the trash messages count

5. The Server moves the selected e-mail to the trash

Postconditions

Exceptions

1. The escape key is pressed while dragging; the operation is
cancelled

2. The e-mail is dragged to an invalid area on the screen;
nothing happens

3. The e-mail is dragged outside the Client window; nothing
happens

Comments



44

UC-41 Client Timer Support

Description The Client can automatically save a draft of the e-mail every
ten minutes

Preconditions The Client is working on a local e-mail (Server Data Access);
the Client can access the Server

Actors User, Client, Server

Normal Sequence

1. The User is working on an e-mail on the Client
2. Every ten minutes:

(a) The Client submits a copy of the e-mail to the Server
(b) The Server saves the e-mail as a draft copy
(c) The Client displays “Auto-saved at (time)”

Postconditions The e-mail object is automatically saved every ten minutes

Exceptions

1. The e-mail has not changed in the last ten minutes; the
Server is not contacted

2. The Server cannot be contacted for any reason; the e-mail
draft save is ignored, and the auto-saved message changes
to “Could not auto-save”

3. The e-mail no longer exists on the Server; an error message
is displayed to the User, and the User is asked if they would
like to save the current draft

Comments Usually implemented with a setTimeout() command through
Javascript



45

UC-42 Server Timer Support

Description The Server can automatically e-mail users new products every
four hours

Preconditions

1. New products are added to a database on the Server
2. A User has requested that they are e-mailed every four

hours of new product listings
3. This process has not occurred for at least four hours

Actors User, Server

Normal Sequence

1. The Server gets a list of all the products added in the last
four hours

2. The Server composes an e-mail listing all of these new
products

3. The Server sends the e-mail to the User (E-mailing Users)
4. The current time is saved as the time this process was last

executed

Postconditions The User has received an e-mail of new products

Exceptions

1. The e-mail cannot be sent; see exceptions in
E-mailing Users

2. There are no new products added in the last four hours;
Steps 2 and 3 are skipped

3. The process does not complete; an error message is dis-
played to the Administrator

Comments

1. Other examples include new listings on auction sites, or
digesting the replies from private messages

2. This is different from Scheduled Events as this use case
is executed every 4 hours; Scheduled Events occurs at the
same specified time every day



46

UC-43 Page Caching

Description A frequently-requested home page can be cached to reduce
unnecessary processing requirements on the Server

Preconditions The home page has some sort of caching setting (five minutes)

Actors Visitor, Server

Normal Sequence

1. A Visitor requests the home page
2. The Server checks the cache to see if a cached version

exists, and its age
3. If the page is too old, the page is recomputed in this re-

quest and stored in the cache
4. The cached result is supplied to the Visitor

Postconditions

Exceptions

1. No cached version of the current page exists; it is recompile
from scratch (as in Step 3)

2. The current Visitor is an Administrator; the cache is ig-
nored and the page is reconstructed every time

Comments

1. This can also be extended to handle page components; e.g.
one section of the page is user account info, another is the
home page

2. Cached pages can integrate with other technologies such as
memcached or Squid, or other Content Delivery Networks
(CDNs)

3. Page caching should not occur when the application is in
a Debug Mode



47

UC-44 Offline Application Support

Description A Client-based application can be taken offline and continued
to be worked on, but no changes can be saved until it is taken
back online

Preconditions Preconditions in Server Data Access

Actors User, Client, Server

Normal Sequence

1. The User is writing an e-mail
2. Access to the web application is taken offline, e.g. a net-

work failure
3. The Client displays a message that the application is of-

fline, but the current e-mail can still be edited
4. The User continues to work on the e-mail, without being

able to save it or send it
5. The application is taken back online; the connection is

restored with the Server
6. The ability to save and send the e-mail is restored

Postconditions Postconditions in Server Data Access

Exceptions

1. The User abandon the e-mail while the application is of-
fline; a warning message is shown and the inevitable data
loss is confirmed

2. The User tries to send the e-mail whilst offline; an error
message is displayed to the User informing they cannot
send the e-mail until online again

Comments

1. This use case covers the functionality of an offline appli-
cation, not the storage of data locally

2. A limited amount of information could be stored through
the technologies mentioned in Persistent Client Data

3. In some cases, e-mails could still be sent by the client, ex-
cept they would be queued up until network connectivity
is restored



48

UC-45 Loading Time Support

Description While an application is loading, the Server should inform the
the User of the progress through application loading. If the
application will take too long to load, the Server should request
the User switches to a different version.

Preconditions The Client can judge the loading process

Actors Visitor, Client, Server

Normal Sequence

1. A Visitor tries to download a large application script
2. The Client starts the download timer
3. After 60 seconds, the Client suggests that the Internet

connection is too slow
4. A message is displayed informing the User about the situ-

ation, allowing them to continue waiting (the default), or
providing them with a link to a simpler site

Postconditions The web application is loaded, or the User has been redirected
to a simpler site

Exceptions

1. The application never loads, or takes more than five min-
utes; the loading process is abandoned and the User is
taken to the simpler site by default

Comments

1. The Static Views (HTML) use case allows for static
HTML pages that could be simpler than the default web
application

2. See also Multiple Browser Support



49

UC-46 Flash MP3 Support

Description An e-mail with an MP3 attachment can be streamed and
played in the webmail application using a custom Flash com-
ponent

Preconditions The User has an e-mail with an MP3 attachment; the Client
can render Flash components

Actors User, Client, Server

Normal Sequence

1. The User opens an e-mail with an MP3 attached
2. The Server returns the e-mail page, along with a Flash

Object
3. The Flash component is loaded by the Client and displays

a play button
4. Once the play button is pressed, the MP3 is streamed from

the Server by the Flash component, and played back to
the User

Postconditions

Exceptions

1. The User does not have Flash installed; the Server or
Client detects the lack of Flash and instead displays a
link to download the MP3 itself

2. The Flash Object fails to load; a link to download the
MP3 file is displayed instead

3. The Server fails to stream the MP3; the Flash component
is replaced with a link to download the MP3 file, or try
contacting the Server again

Comments

1. If Flash is not installed in the Client, the Client can ask
the User if they would like to install Flash

2. Other options for MP3 support include Java applets and
the Quicktime plugin

3. The upcoming HTML5 standard [13] includes a native
component for playing media files



50

UC-47 Flash Communication Support

Description A web page wants to display a slider control for number of
e-mails to display per page, using a custom Flash component

Preconditions

Actors User, Client, Server

Normal Sequence

1. The User requests the list of e-mails
2. The Server returns the list of e-mails, along with a slider

Flash Object
3. The Client loads the Flash component along with the cur-

rent setting as a parameter (50 e-mails per page)
4. The User drags the slider up to 75
5. The Flash component sends a message to the Client via

Javascript of the new e-mails value
6. The Client requests the Server for the 25 previously undis-

played e-mails
7. The Server responds with the 25 e-mails
8. The Client adds the 25 e-mails to the bottom of the e-mail

list

Postconditions

Exceptions

1. The Client cannot load the hidden e-mails; the display
remains unchanged, and the slider is reset

2. The Client cannot load a Flash component; a normal
slider, or text entry field, is displayed instead

Comments

1. The Client should also be able to send messages back to
the Flash component, possibly through Javascript

2. If Flash is not installed in the Client, the Client can ask
the User if they would like to install Flash

3. Flash component are often used when fluidity and richness
of user interface components is a major concern

4. This is a generalised use case of
Communication with Plugins



51

UC-48 Internationalisation Support

Description A web application can have support for multiple locales

Preconditions A web application is translated into at least two locales

Actors Visitor, Server

Normal Sequence

1. The Visitor visits the web application
2. The Server decides the most likely locale for the User,

either from request location or HTTP request header
3. The Server checks to see which supported locale is the

closest match
4. The Server presents the page with the translated compo-

nents

Postconditions

Exceptions

1. The automatically selected locale is incorrect; the Visitor
can select a different locale

Comments

1. Different locales can be provided by different Servers or
represented with different URLs

2. The chosen locale should be stored, probably with a
cookie, for future requests



52

UC-49 Logout Control

Description If a User logs out from a website, it should not be possible to
repeat an activity as that User

Preconditions The User is authenticated

Actors User, Server

Normal Sequence

1. The User composes a message, and sends it through the
web application

2. The User logs out and becomes a Visitor
3. The Visitor presses the back button on their browser, and

tries to resubmit the message
4. The Server realises the Visitor has logged out, and in-

stead displays an error message, asking the Visitor to re-
authenticate

Postconditions The Visitor cannot do any User actions

Exceptions

Comments

1. If the Client could recognise the Visitor has logged out, the
Client could display an error message instead of allowing
the Visitor to browse back in the navigation history

2. This is an important security-related use case



53

UC-50 Single Sign-In Solutions

Description An application can use a single centralised sign-on service
(SSO) for authentication support

Preconditions A single sign-on provider exists; the User has an account with
this service

Actors Visitor, User, Server

Normal Sequence

1. The Visitor authenticates with a web application
2. The application redirects the User to the SSO service
3. The User authenticates with their SSO details
4. The SSO page informs the Server of the login success
5. The Visitor is redirected to the Server, and is authenti-

cated as a User

Postconditions The Visitor is authenticated as a User

Exceptions

1. The User does not have an account with the SSO service;
the SSO service can let the User create a new account

2. The given SSO ID has been blocked on the local web ap-
plication; an error message is displayed to the Visitor, and
authentication is blocked

3. The User cannot authenticate with the SSO service; the
SSO service should help with re-establishing authorisation
(e.g. lost password)

Comments

1. A common SSO service is Google Accounts
2. A common decentralised SSO service that provides iden-

tity, but not trust, authentication is OpenID [14]



54

UC-51 User Redirection

Description A visitor can search a database of sites with a search string,
and be redirected to a given site

Preconditions The Visitor can search a database of sites

Actors Visitor, Server

Normal Sequence

1. The Visitor searches for the search string “puppies”
2. The Server returns a list of all the results for “puppies” in

its database
3. The Visitor clicks the first search result, which leads to a

click-through URL on the Server
4. The Server notes that the Visitor clicked the first search

result for “puppies”
5. The Server sends the Visitor a redirection response to the

actual search result URL, puppies.com
6. The Visitor is redirected to the destination URL,

puppies.com

Postconditions The Visitor is now on the third party website puppies.com

Exceptions

Comments

1. The ability to redirect the user is a basic requirement of
database-driven websites

2. Redirects can either be internal (to the current web appli-
cation) or external (to third party web applications)

3. User redirection can be chained multiple times; care must
be taken to prevent infinite redirections



55

UC-52 Keyboard Shortcuts

Description A web application can implement keyboard shortcuts to help
power users

Preconditions The User has a browser which is capable of intercepting key
strokes

Actors User, Client

Normal Sequence

1. The User logs into their e-mail inbox
2. The User presses the “T” key to move to the Trash folder
3. The Client picks up the “T” key being pressed and “clicks”

the Trash link
4. The User is redirected to the Trash folder

Postconditions The User is viewing the Trash folder

Exceptions

1. The Client cannot intercept the key stroke (e.g. no
Javascript support); nothing happens

Comments

1. Keyboard shortcuts are useful for power users
2. Keyboard shortcuts should not be too intrusive, and must

not occur when trying to enter in actual data



56

UC-53 Undo/Redo Support

Description Whilst working on an online document, the user can undo and
redo actions

Preconditions The User is editing a document locally (see
Server Data Access), with “Bold”, “Undo” and “Redo”
buttons

Actors User, Client, Server

Normal Sequence

1. The User sets a selection of text to be bolded, and presses
the “Bold” button

2. The Client informs the Server, and the Server bolds the
text on the document

3. The Client renders the bolded text
4. The User presses the “Undo” button
5. The Client requests an Undo from the Server
6. The Server unbolds the text on the document, and informs

the Client of the change
7. The Client renders the un-bolded text
8. The User presses the “Redo” button
9. The Client requests a Redo from the Server

10. The Server bolds the text on the document, and informs
the Client of the change

11. The Client renders the bolded text

Postconditions The User is editing the same document

Exceptions

1. The previous action cannot be undone; the Undo button
is disabled

2. An undone action cannot be redone; the Redo button is
disabled

Comments

1. Could be implemented through an Action design pattern
[15]

2. Combining Undo/Redo Support with User Collaboration
may introduce some complex synchronisation problems



57

UC-54 Browser-Based Chat

Description Users can open up a browser-based chat window with other
users, connected through the server

Preconditions

1. There are two Users in the same chat room, opened with
two Clients

2. Each Client has a connection to the Server
3. User 2 is already connected to the Server

Actors User 1, User 2, Client 1, Client 2, Server

Normal Sequence

1. User 1 connects to the chat room
2. Client 1 opens a connection with the Server
3. The Server sends the Client 1 a list of previous chat mes-

sages, which are displayed to User 1
4. The Server sends a message to Client 2, informing them

that User 1 has connected
5. User 2 sends a chat message
6. Client 2 sends the chat message to the Server
7. The Server sends the message to all connected Clients,

displaying them to their Users

Postconditions

Exceptions

1. The connection to the Server cannot be opened; an error
message is displayed to the User, and the chat window is
closed

2. The connection to the Server is lost; the Client attempts
to reconnect the connection; once connected, the Server
resends the Client a list of any activity whilst disconnected

3. The connection to the Server is lost, and cannot be recon-
nected; an error message is displayed to the User, and the
chat window is closed

Comments

1. This is one implementation of a browser-based chat ses-
sion, with the messages sent over the open connection and
interpreted once received

2. A different implementation (more common) uses active
polls on open connections to keep synchronised with server
activity

3. This could be implemented without client-side Javascripts
(regular page refreshes)



58

UC-55 Pop-up Window Support

Description An application can open pop-up windows to assist users in
adding images to e-mails

Preconditions A User is composing an e-mail (see Server Data Access)

Actors User, Client, Server

Normal Sequence

1. The User clicks a button to add an image to the e-mail
2. The Client opens a pop-up window displaying a list of

available images
3. The User clicks an image to add to the e-mail
4. The Client closes the pop-up window and adds the image

to the e-mail composition

Postconditions The image is added to the e-mail display

Exceptions

1. The User does not select an Image, and closes the window;
the Client does not add any image to the e-mail

2. The User ignores the pop-up window, and only interacts
with it once the e-mail application has been closed; any
further action on the window either does nothing, or dis-
plays an error message and closes the window

Comments This can be implemented with any number of technologies,
including a normal browser popup; a modal popup; a Java
application; a Flash component; or a Javascript message dialog



59

UC-56 Incompatible Client Warning

Description If the Visitor visits the website with a browser/client that can-
not fully support all the features the site absolutely requires,
the Visitor is given a warning

Preconditions The web application has some elements that cannot be ren-
dered in the Client

Actors Visitor, Client, Server

Normal Sequence

1. The Visitor visits the website with their incompatible
Client

2. The Server recognises the Client, compares it to the list
of features needed for the website to operate correctly

3. The Server identifies the Client is incompatible or misses
some features
(a) Proceed anyway, at their own risk
(b) Access an alternative site (e.g. Static Views (HTML)

Postconditions

Exceptions

1. The Client cannot be identified; the Server assumes the
Client is fully functional

Comments

1. Some website features may not be “required” but only
optional, in which case the client detection should only
occur when trying to access the feature

2. Runtime browser testing could be performed with script-
ing to work out if the Client is actually incompatible



60

UC-57 Dynamic Objects

Description Depending on the Client accessing the web application, a map
component in a web application can be rendered using script-
ing technology, or only static HTML

Preconditions The map component cannot be rendered with scripting tech-
nology in their Client

Actors Visitor, Server

Normal Sequence

1. The Visitor visits the website with their incompatible
Client

2. The Server recognises the Client is incompatible or misses
some features

3. The Server instead renders the map component with a
static HTML rendering

Postconditions The Visitor can continue to use the site in the same manner
as the scripted rendering

Exceptions

1. The Client cannot be identified; the Server assumes the
Client is fully functional, and uses the scripted technology
rendering

2. The Client is mis-identified; the Visitor can force the web
application to switch to a different rendering

Comments This differs from Multiple Browser Support in that it is con-
cerned with the rendering of individual elements, not complete
applications



61

UC-58 Store Data in Local Database

Description An application can use an offline technology, such as Google
Gears [8], to store data locally in a local database which can
be synchronised when network connectivity is restored

Preconditions

1. The User has Google Gears installed
2. Preconditions in Communication with Plugins
3. The User initially has network connectivity
4. The current web application supports offline operation

Actors User, Client, Server

Normal Sequence

1. The User visits the web application
2. The Client creates a local database to store changes
3. The User loses network connectivity; the application con-

tinues to function as expected
4. The User interacts with the offline application
5. The Client saves changes to the local database
6. The User restores network connectivity:

(a) The Client recognises the User has gone back online
(b) The Client contacts the Server and publishes its

changes
(c) The Client deletes the information in the local

database
7. The User can continue to use the application as expected

Postconditions The system is in a consistent state

Exceptions

1. The User does not have Google Gears installed; a message
is displayed to the User informing them that work will
otherwise be lost when network connectivity is lost

2. The Client recognises its database is out of sync with the
Server database; the Client informs the User and gives
them synchronisation options

Comments

1. Data does not have to be submitted back to the server; it
can be stored on the client indefinitely

2. It is a reasonable assumption that data cannot be expected
to be stored forever on the client

3. The major issue with storing data locally is synchronisa-
tion, especially between multiple independent clients

4. The major use case of offline technology appears to be in
interacting with mostly-read-only data sources

5. Individual resources (images, videos) can be stored
through Store Resources Locally



62

UC-59 Store Resources Locally

Description An application can use an offline technology, such as Google
Gears [8], to store web application resources (images, CSS,
Javascript etc) on the local machine, to allow the application
to go offline

Preconditions

1. The User has Google Gears installed
2. Preconditions in Communication with Plugins
3. The User initially has network connectivity
4. The current web application supports offline operation

Actors User, Client, Server

Normal Sequence

1. The User visits the web application
2. The Client creates a list of resources necessary for offline

operation, including a remote image
3. The Client downloads these resources, including the re-

mote image, and stores them locally
4. The User loses network connectivity
5. The User interacts with the Client, which needs to display

the remote image
(a) The Client retrieves the image from the local machine
(b) The Client returns the image to the browser, which is

displayed to the User identically to online operation

Postconditions

Exceptions

1. Exceptions in Store Data in Local Database
2. An image is requested which is not in the local cache;

either an empty image is displayed, or an error message is
shown

Comments

1. Compared to Store Data in Local Database, the resources
loaded in this method cannot be modified

2. The offline technology must handle modified resources
whenever the resource cache is synchronised



63

UC-60 Multiple Client Threads

Description A rendered web application can execute in multiple threads,
possibly asynchronously, on the Client

Preconditions The Client can run multiple threads

Actors User, Client

Normal Sequence

1. A Client starts an operation
2. The Client splits the operation execution into a second

thread
3. The User continues to interact with the Client in one

thread, while the other thread works in the background
4. At some point, the second thread will terminate

Postconditions The second thread has terminated

Exceptions

1. The Client cannot run threads; either the threads can be
run virtually, or an error message is displayed to the User

2. The second thread terminates unexpectedly; either the
thread is restarted, or an error message is displayed to
the User

Comments

1. Currently no major browser supports multiple Javascript
threads, but may be implemented in the future

2. A thread could be native or virtual (run with ticks in a
single thread)

3. The implementation of the WorkerPool in Google Gears
[8] achieves some level of multiple Client threading



64

UC-61 Multiple Server Threads

Description A web application can execute in multiple threads, possibly
asynchronously, on the Server

Preconditions The Server can run multiple threads

Actors Server

Normal Sequence

1. The Server starts an operation
2. The Server splits the operation execution into a second

thread
3. At some point, the second thread will terminate

Postconditions The second thread has terminated

Exceptions

1. The Server cannot run threads; either the threads can be
run virtually, or an error message is displayed to the Ad-
ministrator

2. The second thread terminates unexpectedly; either the
thread is restarted, or an error message is displayed to
the Administrator

Comments Server-side multiple threading is quite common, however con-
currency and scalability issues often restrict its use



65

UC-62 Communication with Plugins

Description A client application can communicate with browser plugins,
for example, interaction with Google Gears

Preconditions A Client has the Google Gears plugin installed; the Client can
directly communicate with installed plugins

Actors User, Client, Server

Normal Sequence

1. The User visits a web application
2. The Client searches for an installed copy of Google Gears
3. The Client finds that Google Gears has been installed, and

creates a new local instance of the Google Gears factory
4. The Google Gears factory can then be used to create addi-

tional objects, such as the DataStore and Local Resource
Pool

Postconditions

Exceptions

1. Step 3: The user does not have Google Gears installed;
either an error message can be displayed, or the exception
can be ignored

Comments

1. Plugin technologies include ActiveX (for Internet Ex-
plorer) and NPAPI (for Firefox)

2. Other use cases for communicating with plugins include
identifying installed versions or executing functionality

3. Flash Communication Support is a particular instance of
using plugins to interact with a rendered page



66

UC-63 Scheduled Events

Description A Server can have a daily scheduled event (e.g. at 5am every
day) to send new blog entries to every User on the system.

Preconditions There is a list of Users on the system; the scheduled time has
arrived (i.e. 5am)

Actors Server

Normal Sequence

1. The Server iterates through recent blog entries and con-
structs a message of new entries

2. The Server iterates through all Users in the system
3. The Server sends an e-mail (E-mailing Users) to each User

with this message
4. The Server proceeds onto the next user

Postconditions All users have been processed.

Exceptions

1. The scheduled event is skipped; the event is executed as
soon as possible

2. The scheduled event is cancelled or unexpectedly termi-
nated; an error message is displayed to the Administrator,
and the process may be restarted from where it left off

Comments See Server Timer Support for a process which occurs regularly,
instead of at a specific scheduled time.



67

UC-64 Custom API Publishing

Description A blogging website can publish a custom API (e.g. the Live-
Journal API) to allow external software/websites to post blog
content

Preconditions The Server has a published API endpoint, along with an ex-
pected API message format

Actors Server, User or Remote Server

Normal Sequence

1. The User or Remote Server constructs a PostMessage mes-
sage

2. The User submits the PostMessage message to the
Server’s published API endpoint

3. The Server receives and parses this PostMessage message
4. The Server creates a new blog entry, based on the input

from the posted message
5. The Server saves the blog entry, and returns an “OK”

message

Postconditions

Exceptions

1. The message cannot be parsed; an error message is re-
turned via the web service

2. The blog entry cannot be saved; an error message is re-
turned via the web service

Comments

1. Compared to Web Service, this use case covers the publi-
cation of a custom API, not necessarily using a published
protocol

2. This is often achieved through custom JSON [12], XML
or REST APIs



68

UC-65 Runtime Interface Updates

Description The Client can update the user interface of a calendar site
based on User input, without reloading or redirecting the
Client

Preconditions The Client can run Javascript scripts; the User is viewing a
monthly calendar page

Actors User, Client

Normal Sequence

1. The User selects “two weeks” as the calendar view
2. The Client replaces the monthly view of the calendar with

a fortnightly view, without reloading or redirecting the
Client

Postconditions The User is viewing a fortnightly calendar page

Exceptions

1. The Client needs to load data asynchronously from the
Server, but cannot contact it; the Client instead reloads
the current page, or an error message is displayed to the
User

Comments This use case includes loading data asynchronously using
AJAX technologies



69

UC-66 Out-of-Order Events

Description The Client can ignore events which come out of order, for
example when requesting a list of search results that start
with a particular prefix

Preconditions The Client can send/receive asynchronous messages

Actors User, Client, Server

Normal Sequence

1. The User enters in “a”
2. The Client sends an asynchronous request to the Server

(message 1 ) for results starting with “a”
3. The Server receives message 1, and sends back a list of

results (response 1 )
4. The User enters in “ab”
5. The Client sends an asynchronous request to the Server

(message 2 ) for results starting with “ab”
6. The Server receives message 2, and sends back a list of

results (response 2 )
7. The Client receives response 2, and displays a list of results

starting with “ab”
8. The Client receives response 1, but recognises that mes-

sage 2 was sent later; the Client ignores this response

Postconditions A list of results starting with “ab” are displayed

Exceptions

1. Response 2 does not arrive after a specified timeout pe-
riod; the result from response 1 is displayed, and message
2 is resent

Comments

1. In some cases, it may be desirable to display both re-
sponses, even if they are out of order

2. In extreme cases, where the order of messages is truly
important, an additional layer of network control should
be implemented (similar to TCP)



70

UC-67 Backwards-Compatible Scripting

Description Non-essential functionality in scripted web applications do
not affect the operation of web applications on incompatible
clients; for example, a button should light up when it is clicked

Preconditions An incompatible client is accessing a web application with a
button, that is using incompatible scripting

Actors User, Server

Normal Sequence

1. The User clicks on a button
2. The Client tries to “light up” the button
3. The Client-side animation fails, but the failure is caught

by the Client
4. The execution of the button clicking continues as normal

Postconditions The button is clicked

Exceptions

Comments

1. If scripted functionality is actually required, then the
Client should be redirected to a more suitable appli-
cation rendering, as in Incompatible Client Warning or
Multiple Browser Support

2. The less desirable alternative is for the incompatible
scripting to throw an error message, that prevents the but-
ton from functioning at all



71

UC-68 Spellchecking

Description A form can be spellchecked, either at submit or at runtime.

Preconditions A form can be edited by the User.

Actors User, Server

Normal Sequence

1. The User enters in some incorrect text onto the form
2. The User submits the form to the server
3. The Server checks the submitted data for spellchecking,

to ensure the text is entered in correctly
4. The submitted data is saved

Postconditions The submitted data is fully spellchecked

Exceptions

1. Step 3, the submitted data is badly spelt; the Server
presents the User with a list of possible corrections, and
goes back to Step 1

Comments

1. Some Clients support spellchecking natively
2. If Internationalisation Support is supported, spellchecking

must also take into account the different locales



72

References

1. Garrett, J.J.: Ajax: A New Approach to Web Applications. Technical report (2005)
2. Preciado, J.C., Linaje, M., Sanchez, F., Comai, S.: Necessity of Methodologies to

Model Rich Internet Applications. In: WSE ’05: Proceedings of the Seventh IEEE
International Symposium on Web Site Evolution, Washington, DC, USA, IEEE
Computer Society (2005) 7–13

3. Fraternali, P.: Tools and approaches for developing data-intensive Web applica-
tions: a survey. ACM Comput. Surv. 31(3) (1999) 227–263

4. Schwabe, D.: A Conference Review System. In: First International Workshop on
Web-Oriented Software Technology. (2001)

5. Wright, J., Dietrich, J.: Survey of Existing Languages to Model Interactive Web
Applications. In: Proceedings of the Fifth Asia-Pacific Conference on Conceptual
Modelling (APCCM 2008), Wollongong, NSW, Australia (2008)

6. Wright, J., Dietrich, J.: Requirements for Rich Internet Application Design
Methodologies. In: Proceedings of the Ninth International Conference on Web
Information Systems Engineering (WISE 2008), Auckland, New Zealand (2008)

7. Dojo Foundation: The Dojo Toolkit (2007)
8. Google Inc.: Google Gears (2007)
9. Peter-Paul Koch: Conditional comments (2009)

10. RSS Advisory Board: RSS 2.0 Specification. Technical report, RSS Advisory Board
(2007)

11. W3C Group: Simple Object Access Protocol (SOAP) Version 1.2. Technical report,
W3C Recommendation 27 April 2007 (2007)

12. D. Crockford: RFC 4627: The application/json Media Type for JavaScript Object
Notation (JSON). Technical report, The Internet Society (2006)

13. W3C Group: HTML 5: A vocabulary and associated APIs for HTML and XHTML.
Technical report, W3C Working Draft 26 February 2008 (2008)

14. Recordon, D., Reed, D.: OpenID 2.0: a platform for user-centric identity manage-
ment. In: DIM ’06: Proceedings of the second ACM workshop on Digital identity
management, New York, NY, USA, ACM (2006) 11–16

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1995)


	Background
	Actors
	Use Cases
	View Data
	Update Data
	Pagination
	User Action Auditing
	Debug Mode
	Server Transaction Support
	Local Data Storage
	Server Data Access
	Persistent Client Data
	Temporary Server Data
	Uploading Files
	Restore Server Session
	User Authorisation
	Password Reset
	Session Support
	Account Registration
	Automatic User Authorisation
	Static Views (HTML)
	Asynchronous Form Validation
	Client Form Validation
	Server Form Validation
	Multiple Browser Support
	Mobile Phone Support
	Remote Data Source
	Active Remote Data Source
	Data Feeds
	Web Service
	Back/Forwards Button Control
	Opening New Windows
	Client-Side Application
	Communication with Software
	Mobile Phone Communication
	E-mailing Users
	E-mail Unsubscription
	Persistent Errors
	User Content Security
	Private User Content Security
	User Collaboration
	Interactive Map
	Drag and Drop
	Client Timer Support
	Server Timer Support
	Page Caching
	Offline Application Support
	Loading Time Support
	Flash MP3 Support
	Flash Communication Support
	Internationalisation Support
	Logout Control
	Single Sign-In Solutions
	User Redirection
	Keyboard Shortcuts
	Undo/Redo Support
	Browser-Based Chat
	Pop-up Window Support
	Incompatible Client Warning
	Dynamic Objects
	Store Data in Local Database
	Store Resources Locally
	Multiple Client Threads
	Multiple Server Threads
	Communication with Plugins
	Scheduled Events
	Custom API Publishing
	Runtime Interface Updates
	Out-of-Order Events
	Backwards-Compatible Scripting
	Spellchecking


