
Survey of Existing Languages to Model Interactive Web

Applications

Jevon Wright Jens Dietrich

Institute of Information Sciences and Technology,
Massey University,

Palmerston North, New Zealand.
Email: j.m.wright@massey.ac.nz, j.b.dietrich@massey.ac.nz

Abstract

Over the last few years, the web is establishing in-
creased importance in society with the rise of social
networking sites and the semantic web, facilitated and
driven by the popularity of client-side scripting com-
monly known as AJAX. These allow extended func-
tionality and more interactivity in web applications.
Engineering practices dictate that we need to be able
to model these applications. However, languages to
model web applications have fallen behind, with most
existing web modelling languages still solely focused
on the hypertext structure of web sites, with little
regard for user interaction or common web-specific
concepts.

This paper provides an overview of technologies in
use in today’s web applications, along with some con-
cepts we propose are necessary to model these. We
present a brief survey of existing web modelling lan-
guages including WebML, UWE, W2000 and OOWS,
along with a discussion of their capability to describe
these new modelling approaches. Finally, we discuss
the possibilities of extending an existing language to
handle these new concepts.

Keywords: web engineering, models, interactivity,
AJAX, RIAs, events

1 Introduction

The World Wide Web started out in the early 1990s
as an implementation of a globally distributed hy-
pertext system. Primitive pieces of software called
web browsers allowed users to render hypertext into
visually pleasing representations that could be navi-
gated by keyboard or mouse. These early web sites
were generally static pages, and were typically mod-
elled with languages focused on the hypertext struc-
ture and navigation of the web site (Garzotto et al.
1993). The full integration of hypertext with rela-
tional databases allowed the creation of data-intensive
websites, which also necessitated new modelling con-
cepts and languages (Merialdo et al. 2003).

Currently, the most popular modelling languages
for web applications are WebML (Ceri et al. 2000) and
UWE (Koch & Kraus 2002). Both of these languages
represent web applications using conceptual models
(data structure of the application domain), naviga-
tional models, and presentation models. As such, the
ability to express the interactivity of the application is
generally restricted to the navigational models, which

Copyright c©2008, Australian Computer Society, Inc. This pa-
per appeared at the Fifth Asia-Pacific Conference on Concep-
tual Modelling (APCCM 2008), Wollongong, NSW, Australia,
January 2008. Conferences in Research and Practice in In-
formation Technology (CRPIT), Vol. 79, Annika Hinze and
Markus Kirchberg, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

allow designers to visually represent the components,
links and pages of the application.

These languages are excellent at describing older
web applications; however recently the increased use
of interactivity, client-side scripting, and web-specific
concepts such as cookies and sessions have left exist-
ing languages struggling to keep up with these Rich
Internet Applications (RIAs: Preciado et al. 2005). In
this paper we aim to review these existing languages
and identify where they are falling short, and how
they could be improved.

This paper is organised as follows. Section 2 is
an overview of some of the features possible with rich
scripting support. To model these new features, we
propose in Section 3 some new modelling concepts
for interactive web applications. We present a brief
survey of the existing modelling languages WebML
and UWE in Sections 4 and 5, and discuss their abil-
ity to model these new concepts. We briefly mention
W2000, OOWS and other potential languages in Sec-
tion 6; a summary of our language evaluations are
presented in Table 2. In the final section, we discuss
our findings, provide an overview of related work, and
highlight future work of this research project.

2 New Features

Arguably, the most important recent feature of the
web is the ability to run scripts on the client (gen-
erally through Javascript). Combined with the abil-
ity to access and modify client-side Document Object
Models (DOM: W3C Group 2004) of the browser, and
the ability to compose asynchronous background re-
quests to the web, these concepts together are com-
monly referred to as AJAX (Garrett 2005). AJAX
allows applications to provide rich client-side inter-
faces, and allows the browser to communicate with
the web without forcing page refreshes; both funda-
mental features of RIAs.

Technologies like AJAX support thin client appli-
cations that can take full advantage of the computer
power of the clients. These applications reduce the to-
tal cost of ownership (TCO) to organisations as they
are deployed and maintained on directly manageable
servers, and aim to be platform-independent on the
client side. To achieve this, AJAX has had to over-
come limitations of the underlaying HTTP/HTML
protocols, such as synchronous and stateless request
processing, and the pull model limitation where ap-
plication state changes are always initiated by the
client1. This has resulted in rich applications that
use the web browser as a virtual machine.

The impact of these technologies has been signifi-
cant; new services such as Google Docs (Google Inc.

1The opposite to the pull model is the push model, where state
changes are pushed from the server to the client; this is commonly
implemented on the web with pushlets (van den Broecke 2002).



2006) are implementing collaborative software solu-
tions directly on the web, based on the software as
a service philosophy, and to some degree competing
with traditional desktop software such as Microsoft
Office. RIAs can also be developed in environments
such as Flash, which are provided as a plugin to ex-
isting web browsers, but can reduce accessibility2.

One popular example of AJAX is to provide an
auto-completable destination address text field in an
e-mail web application. As the user enters characters
into this field, the client contacts the server for ad-
dresses containing these characters, displaying a list of
suggested addresses. This improves usability, poten-
tially reduces the overall bandwidth of network com-
munication, and improves interactivity and respon-
siveness.

An investigation of some of the most popular
AJAX-based websites on the web allows us to iden-
tify some of the features that these new technology
provides to web applications. This has allowed us
to develop a comprehensive selection of use cases for
AJAX technologies, which we omit from this paper
for brevity. Without going into detail, and removing
features that are already addressed in existing mod-
elling languages, new application features that require
support include:

1. Storing data on the client and/or server, both
volatile and persistent3;

2. Allowing automatic user authentication based on
cookies4;

3. Allowing form validation to occur on the server,
on the client before submission, or in real-time
during form entry;

4. Providing different output formats for resources,
including HTML, XML, WML, and Flash, pos-
sibly based on the user-agent of the visitor;

5. Providing web services and data feeds, and inte-
gration with external services and feeds, both on
the server and the client;

6. Preventing the user from corrupting the state of
a web application, for example by using browser
navigation buttons;

7. Providing more natural user actions such as drag-
and-drop, keyboard shortcuts, and interactive
maps;

8. Describing visual effects of transitions between
application states5;

9. Having scheduled events on either the client or
the server;

10. Allowing web applications to be used offline6;

11. Distributing functionality between the client and
the server, based on client functionality, deter-
mined at runtime.

2Flash requires additional software to be installed on the client
machine, and generally has fewer accessibility features than tradi-
tional web sites, though this problem has been a focus in recent
versions (Regan 2005).

3Possibly through cookies, or offline plugin software such as
Google Gears (Google Inc. 2007).

4Not all of these new requirements are strictly related to script-
ing; in this case, existing languages lack modelling support for
cookies.

5Visual effects can improve the implementation of system
metaphors, e.g. fast forward/rewinding through a movie clip
metaphor of a series of images.

6This could be achieved through plugin software such as Google
Gears or the Dojo Offline Toolkit (The Dojo Foundation 2007).

These new features are distributed over both the
clients and servers of web applications. Existing lan-
guages based solely on replacing the entire client-side
DOM on each request are clearly no longer appropri-
ate, as scripting permits modifying the DOM at run-
time. We require a more dynamic language, which
can be extended to handle these new features.

3 Modelling Concepts

Due to the recent development of these new web ap-
plications, there is no existing modelling language for
representing these interactive web applications, nor
even a comprehensive discussion on what concepts
would be required in such a language. To fill this
important gap, we propose the following modelling
concepts, based as much as possible on existing stan-
dards.

3.1 Events

Events are an integral part of new Web applications;
indeed, document scripting is directly event-driven,
achieved by capturing events created by the web
browser (part of the DOM Level 2 events specification
(W3C Group 2000); examples include the onClick
and onMouseOut event handlers). Instead of a web
application simply responding to navigation through
a hypertext, it now has to also contend with user in-
teraction, element manipulation, scheduled events, re-
mote client access, exceptions, and more. The most
obvious solution to this problem is to promote events
to first-class citizens in the model. A web modelling
language should have the ability to define, capture,
and create a range of events.

These events could be succinctly captured in terms
of Event-Condition-Action (ECA) rules, which are
quickly becoming standardised and accepted in the
modelling community. ECA rules allow for built-
in specification mechanisms through pre- and post-
conditions, and can already be visually modelled
in UML7. There are also emerging standards for
rule storage and serialisation through R2ML (Rew-
erse Working Group I1 2006) and Reaction RuleML
(Paschke et al. 2007).

3.2 Browser Control

Once simply an extension to a low-level hypertext
navigation interface, the user’s web browser has be-
come an important part of any web application. The
browser is the medium for the interactions between
the user, the user’s host device, and the remote web
application; it also allows web applications to take
advantage of the clients’ computing power to provide
a richer interface. A web modelling language should
be able to model concepts specific to browsers, which
we have identified to include:

1. Navigation: The very nature of the web allows
for users to browse applications out-of-order and
jump across navigational links. It is important
to not let the user corrupt the state of the web
application, or repeat significant events out-of-
order8. Consideration must also be made to the
possibility of one user browsing different parts of
the web application through multiple windows.

2. Cookies: Cookies allow the web application to
save small amounts of data to the users’ device,

7see R2ML or the Universal Rule Markup Language URML
(Tabet et al. 2000) for more information.

8We must also not always restrict the user to only one path of
navigation, which would be a serious usability issue.



Layer Scope Example Use

Component elements in the DOM when a page widget is loaded, move focus to a text box
Request a single HTTP request transform XML to WML at end of request
Page one page can contain many requests

over AJAX
close an opened window when the parent page has closed

Session a visitor has at least one session delete shopping cart on session timeout
Login can span multiple sessions, without

manual re-authentication
save temporary shopping cart to database on logout

User represents the user itself when a user closes an account, delete all their blog en-
tries

Application represents the entire application when application is created, create temporary adminis-
trator accounts

Table 1: Possible lifecycle layers and their potential use

adding some context/state information to an oth-
erwise stateless protocol. These are often used to
implement sessions.

3. Opening windows: On some browsing devices,
opening additional windows (either new browser
windows or virtual windows inside the applica-
tion itself) allows for more natural representa-
tions of some types of interactions.

4. Scripting: A web modelling language should have
some support to identify (and handle) scripting
support in the browser; this could allow us to
switch users to a more accessible site which does
not require browser scripting9.

5. Plugins: Integration with browser plugins is an
important extensibility aspect for web applica-
tions.

6. User Agent Identification: By identifying the vis-
itor’s user agent, we can make decisions on what
content to show10.

3.3 Lifecycles

One new concept that should be addressed is the abil-
ity to identify and define lifecycles in a web applica-
tion. By defining application lifecycles, we can sepa-
rate out the layers of a web application into multiple,
conceptually-distinct layers. With the opportunity to
model events at the beginning and end of lifecycles, we
can represent complex interactions with simple struc-
tures. We present a small selection of potential lifecy-
cles in Table 1; note how each successive layer builds
upon the previous one.

3.4 Users and Security

Along with events, we suggest that users are also an
integral part of web applications. The majority of
web applications are concerned with the creation and
definition of user accounts. Users often have roles or
permissions, and often are described in a hierarchy.
Implementation of the security of these roles and per-
missions are vital.

Collaborative software such as Google Docs allow
many users to work on a single document at once;
these user networking concepts should be supported
in a model, along with being able to model the inter-
actions between multiple users. Concise and secure
integration of these concepts are vital to the develop-
ment of secure web applications.

9One example of this is a RIA web-mail client redirecting to a
text-only site if the browser cannot execute scripts.

10For example, switching to a mobile-optimised site for mobile
devices.

3.5 Databases

The original hypertext applications were no more
than navigation through a complex hypertext of static
pages. Since then, integration with databases to pro-
vide data-intensive web applications have become the
industry norm. This provides new modelling chal-
lenges for web application models, in particular:

1. Abstraction to a persistent domain model, which
can be independently implemented through a
database;

2. The ability to upload files to databases or filesys-
tems, which can be considered a type of database;

3. Distribution of data onto clients, through cook-
ies or local offline storage, e.g. Google Gears
(Google Inc. 2007), and synchronisation between
client and server databases;

4. Being able to reference multiple databases in an
application for scalability purposes.

3.6 Messaging

The most common type of event in web applications is
the ability for two components to message each other.
The obvious example is the HTTP request/HTML re-
sponse of traditional web applications, but the range
of potential messaging scenarios has grown to include
technologies such as sending e-mails, text messages to
mobiles, invocation of web services using SOAP re-
quests (W3C Group 2007), RSS feeds, and so on. A
web modelling language should have concise support
for describing these types of messages, and should be
extensible in the future.

3.7 User Interface Modelling

Generally, a web application modelling language
should try and keep user interface modelling separate
from the conceptual model, to promote separation of
concerns. However, web applications now require the
ability to model user interface components with event
support; for example, events linked to a button on
a page may change the state of the web application
when the button is activated.

Atterer (2005) notes that separate presentation
and navigation models tend to remain strongly re-
lated, which raises the question over the suitability of
having these models separated, especially for interac-
tive web applications.

3.8 Standards

Innovations on the web are typically proliferated
through standards; likewise, a modelling language
must also adhere to standards to improve acceptance



by the engineering community. A modelling language
should be platform-independent, allowing application
deployment on a variety of platforms. It should use
existing standards where possible, and should have
support for modelling with UML (Object Manage-
ment Group (OMG) 2005a).

Any conceptual modelling language should have
support for the Model-Driven Architecture concept
(MDA: Object Management Group (OMG) 2003),
which is an emerging standard that promises tangible
benefits for the quality of software engineering. This
standard provides a model with a meta-model – of-
ten through the existing Meta-Object Facility model
(MOF: Object Management Group (OMG) 2006) –
which makes model transformations through existing
languages such as QVT and ATL easier (Jouault &
Kurtev 2006).

By having the ability to transform models into
other models, we can easily develop systems in a
range of MDA-compliant models, allowing for auto-
mated model translation, simplified integration with
diverse platforms and quick round-trip engineering;
these address a real industry need for agile develop-
ment. Languages with such support also gain sev-
eral advantages, including access to existing software
tools to edit and visualise models, and code genera-
tion frameworks such as Eclipse’s JET (Eclipse Foun-
dation 2007a); similarly, a model which can be seri-
alised using standards such as XMI (Object Manage-
ment Group (OMG) 2005b) allows easy integration
with other CASE tools. The benefits of the model-
driven approach are further explained in Kraus &
Koch (2002).

3.9 Verification

An important aspect of software engineering is for-
mal verification, with software verification a well-
established field (Holzmann 1997). Thus it is also
important to apply the same validation objectives to
web applications. The structure of the web intro-
duces different validation concerns, including testing
for broken links, page reachability, missing resources,
load testing and syntax validation (Bellettini et al.
2005). Many modelling language support custom con-
straints, often represented as pre- and post-conditions
safeguarding the execution of behavioral elements.
Verification mechanisms are needed to check those
constraints, and interfacing these mechanisms with
existing model checkers such as Alloy (Jackson 2006)
would be beneficial.

The ability to design applications with asyn-
chronous callbacks adds some new challenges. Some
of them, like the detection of deadlocks and and re-
source starvation, reflect general issues in concurrent
systems. Others are related to constraints that can
be used to specify the interaction of concurrent pro-
cesses. For instance, consider the auto completion
example used earlier. It is possible that earlier asyn-
chronous requests are overtaken by later requests due
to the structure of the web – resulting in the list of
suggested strings suddenly becoming less precise. On
the modelling level, a constraint must be used stating
that the order of responses must be the same as the
order of requests.

3.10 Software Support

Finally, a web modelling language should be sup-
ported by software tools, either through a dedicated
CASE tool, or by extending existing frameworks such
as the Eclipse Modeling Framework (EMF: Gerber
& Raymond 2003). This allows for proof-of-concept
and increases acceptance by the software engineering
community.

4 WebML

A major existing academic web modelling language is
WebML (Ceri et al. 2000). Derived from AutoWeb
(Merialdo et al. 2003), WebML provides a platform-
independent conceptual model for data-intensive web
sites. It is a topic of active research, with extensions
proposed for a range of concepts such as web services
(Manolescu et al. 2005), process modelling (Brambilla
et al. 2006), exceptions (Brambilla et al. 2005) and
context awareness (Ceri et al. 2007). The language
is also supported through the commercial CASE tool
WebRatio (WebRatio Group 2007a).

WebML models are composed of five models,
which we will briefly summarise for completeness;
for more details, the reader is referred to Ceri et al.
(2001):

1. Structural model: an Entity-Relationship (ER)
model of the data in the system and their rela-
tionships;

2. Derivation model: uses an OQL-like syntax
called WebML-OQL to specify derived data in
the structural model;

3. Composition model: describes the content units
of a site, composed of site views, which display
object data;

4. Navigation model: provides contextual links be-
tween content units;

5. Presentation model: contains XSL stylesheets to
transform XML models into the output platform
language.

Figure 1: Hypertext model of a simple WebML ap-
plication

The most important model in WebML is the Hy-
pertext model, which is the combination of the Com-
position and Navigation models. An excerpt from an
example model for a simple online CD store is pre-
sented in Figure 1. These models are developed in an
iterative waterfall manner.

Note that there appears to be a new AJAX ex-
tension under development (WebRatio Group 2007b),
but details of this extension have not yet been pub-
lished; it appears to consist of a predefined range of
standard AJAX components such as auto-complete
fields and drag-and-drop objects.



Feature WebML UWE W2000 OOWS OOHDM Araneus

Events Ok - Poor - - -
Browser Control Poor - - - - -
Lifecycles Poor Good Poor - - -
Users Good Poor Poor Poor - -
Security Ok Ok Poor - - -
Databases Good Ok Poor Poor Poor Poor
Messaging Good Poor Ok - - -
UI Modelling Poor Ok Ok Poor Ok Poor
Platform Independent Excellent Excellent Good Excellent Good Ok
Standards Poor Excellent Excellent Ok Poor -
Meta-models Poor Excellent Excellent Poor - -
Model Verification Ok Ok - - - Poor
CASE Tool Good Ok Poor Ok - Ok

Table 2: Feature Comparison of Existing Languages to Model Interactive Web Applications

4.1 Events

Ceri et al. (2002) extends WebML to handle opera-
tions and operation chains, which allows WebML to
describe server-side events; this can be seen in the
transaction area in Figure 1. Bozzon et al. (2006)
further extends the model to allow for distinguishing
between client and server operations and objects with
the C (Client) symbol, depicted in Figure 2. Events
can only execute explicitly from a request, and can-
not spawn additional operations in parallel, except
through external web services (Manolescu et al. 2005).
Exception support is also proposed in Brambilla et al.
(2005) through a variety of event models, however this
is not yet supported in WebRatio.

Figure 2: Client/server extensions to WebML

4.2 Browser Control

A WebML model has little support for controlling
the browser, with no support for cookies, scripting or
identifying the user agent. It allows for scripted com-
ponents, but the model cannot describe the scripts
themselves.

4.3 Lifecycles

The closest thing we can compare lifecycles to is the
use of operation chains and navigation links, but these
suffer the same issues as event modelling in WebML.
An example of this lifecycle support – to delete the
users shopping cart at the end of their session – is pre-
sented in Figure 3; note that this operation chain only
occurs when the user explicitly logs out11. WebML

11The Logout User unit actually resets the session and redirects
the user to the home page; it does not support post-operations.

does not treat lifecycles as separate conceptual ob-
jects, and as such, implementation of lifecycles could
add a lot of complexity and redundant information to
the model.

Figure 3: Emulating lifecycle events in WebML

4.4 Users and Security

WebML has inbuilt support for users and groups, but
only as members of the structural model. Each user
belongs to at least one group, and each group can only
access one site view12. The model assumes only one
user interacts with the model at any one time, so can-
not support modelling the interaction between mul-
tiple users. The only permissions represented in the
model is the ability for groups to view certain pages;
additional security permissions must be checked ex-
plicitly through operation chains.

4.5 Databases

The use of an ER model in the structural model of a
WebML model abstracts the data from the database
system; the hypertext models can abstractly access
entities in the model. It has limited support for
uploading files or handling multiple databases, but
should be extensible.

4.6 Messaging

Messaging support is limited to the contextual infor-
mation passed between hypertext model units; units
can also access global parameters. Ceri et al. (2007)
adds units to allow the model to access query pa-
rameters directly. WebML has excellent support for
describing a wide range of web services (Manolescu
et al. 2005), and also has good support for sending
multi-part e-mails with attachments using its Power
Mail unit.

4.7 UI Modelling

There is no formal model in WebML for modelling
the user interface; the presentation model takes gen-
erated XML pages and transforms them using XSL

12To switch site views in WebML, the user must explicitly switch
into another group.



stylesheets into HTML pages. The CASE tool We-
bRatio provides a presentation editor which uses a
grid-based layout; other presentation attributes have
to be composed manually, possibly assisted with ex-
ternal stylesheet design software13.

4.8 Standards

WebML is platform-independent by design. The gen-
erated pages can be in any language, limited only by
the implementation of the software tool; WebRatio
currently outputs to JSP pages.

The WebML model is generally proprietary, except
for the use of ER diagrams for its structural model.
It has no support for meta-modelling tools or stan-
dards, and the basic WebML model has only recently
been implemented as a UML 2.0 profile (Moreno et al.
2006). It lacks comprehensive support for MDA con-
cepts.

4.9 Verification

WebML models have no formal verification process.
The WebRatio tool provides a means to search the
model for structural and content warnings, but the
model itself cannot currently be integrated with any
existing model checkers (such as Alloy: Jackson 2006).
The model generation process itself has previously
been tested with a custom internal prototype in
Baresi, Fraternali, Tisi & Morasca (2005).

4.10 Software Support

WebML is actively supported by the development of
the CASE tool WebRatio, which provides support for
most of the features discussed in this paper. Some ex-
tensions, such as exception support, are not yet imple-
mented. The newest version 5.0 extends the popular
Eclipse framework (Eclipse Foundation 2007b) and is
currently in beta, but does not appear to utilise the
EMF framework (Gerber & Raymond 2003).

5 UWE

UML-based Web Engineering (UWE) is an extension
to UML which aims to provide web application mod-
elling support using standard UML constructs. Like
WebML, UWE consists of a number of models; how-
ever UWE provides automatic and semi-automatic
tools to help the developer progress from model to
model, which allows the design process to be more
iterative and incremental than WebML’s waterfall
model.

Most models are generated automatically from
previous models, using model transformation tech-
niques such as QVT and ATL; for more informa-
tion on this process, the reader is referred to Koch
(2007). UWE is supported by the CASE tool Ar-
goUWE (Knapp et al. 2003), based on the open source
ArgoUML software (ArgoUML Group 2007). The vi-
sual models involved in UWE include:

1. Requirements model: Use cases and activity
diagrams are provided which describe the re-
quirements of the system. (Based on WebRE,
Cuaresma & Koch 2006, .)

2. Conceptual model: A UML class diagram de-
scribing the data structure of the application.

13WebRatio comes bundled with the XSL template designer
EasyStyler Presentation Designer (Brambilla et al. 2006).

3. Navigation Space model: Constructed from the
conceptual model, this specifies which data ob-
jects can be visited through application naviga-
tion.

4. Navigation Structure model: The Navigation
Space model is refined manually to specify how
data objects can be visited through navigation.
This adds access element stereotypes such as
«index», «guided tour», «query» and «menu».

5. Presentation model: Abstractly specifies the
structure of an element in the navigation struc-
ture, using stereotyped elements such as «text»,
«form», «anchor», «image» and so on.

6. Task model: Uses activity diagrams to model ac-
tions, and reference models in the presentation
model.

7. Deployment model: Describes the structure of
the deployed application using a UML deploy-
ment diagram.

8. Integration model: This model further refines the
navigational structure of the application into a
“big picture”model, which is used to generate the
platform-specific implementation; for more infor-
mation, the reader is referred to Koch (2007).

Figure 4: Navigation Structure model of a simple
UWE application

Figure 5: Presentation model of a simple UWE ap-
plication

By progressing through the incremental models,
we can construct a Navigational Structure model for
the same simple online CD store application, pre-
sented in Figure 4. The access elements in this model
can be refined through UML activity diagrams as in



Figure 6: Interaction model of a simple UWE appli-
cation

the Interaction model presented in Figure 6. These
models refer to presentation classes such as the one in
Figure 5, which abstractly describe the content and
layout of the displayed data object.

As UWE is more recent than WebML, it does not
have nearly as many extensions to its functionality;
but does have a promising extension to add aspect-
oriented modelling (Baumeister et al. 2005). UWE is
based on the structure and navigation of web applica-
tions, and as such, lacks features such as events that
would be required for interactive application mod-
elling.

5.1 Events

UWE has no explicit support for events; as it is mod-
elling only the structure and navigation of web appli-
cations, events are ignored and the focus is instead
on tasks and activities. The language only considers
server-side modelling, so there is no opportunity for
client-side activity modelling.

5.2 Browser Control

The client and browser is completely ignored in UWE,
with no support for controlling it, or accessing cook-
ies, scripting or plugins.

5.3 Lifecycles

The interaction and task models allow a fairly good
representation of interaction lifecycles in UWE, but
fall short of specifying comprehensive lifecycle man-
agement. These are not real lifecycles, but only in-
teraction structures; any activity happens explicitly.
Nevertheless, UWE has promising support for the life-
cycle concept.

5.4 Users and Security

Users are treated only as data objects, and as ac-
tors for requirements engineering. As such, user per-
missions and security are ignored, and assumed to
be handled in the models themselves. Zhang et al.
(2005) suggests modelling access control with aspects;
this allows for more expressibility than restricting ac-
cess based on user permissions, and allows for the
construction of fairly complex security, but isn’t yet
implemented in the CASE tool ArgoUWE.

5.5 Databases

Similar to WebML, the conceptual model of a UWE
model abstracts the data from the database system.
The navigation and presentation diagrams are based
on accessing these objects in the database. It has no

support for uploading files, or accessing the filesys-
tem. Since UWE is server-side only, there is no client-
side data support.

5.6 Messaging

UWE has no explicit support for concepts such as
web services or data feeds, but this would likely be
a simple extension. Like WebML, contextual infor-
mation is automatically passed between navigational
links. However it does not support sending e-mails –
an important component of web applications.

5.7 UI Modelling

The abstract components used in the presentation
model are excellent, allowing the designer to concep-
tually specify the construction of their page without
worrying about implementation details, and simplifies
the manual formatting required at the end of the im-
plementation cycle. However, due to a lack of event
support, it is not possible to model interaction of the
DOM itself.

5.8 Standards

UWE has excellent standards support, as it is based
around extending UML using existing standards; all
diagrams are UML compliant, and UWE has a MOF-
compliant meta-model, which is used extensively in
its automated model transformations. UWE’s stan-
dards support is a natural side effect of following the
MDA concept.

5.9 Verification

The CASE tool ArgoUWE currently checks the well-
formedness of the model through continuous verifi-
cation (Knapp et al. 2003). Future work will focus
on the integration of UWE with the model checker
AGG (Taentzer 2003) to provide model verification;
for more information the reader is referred to Koch
(2007).

5.10 Software Support

UWE is supported with the CASE tool ArgoUWE,
which is a plugin extension of the open source UML
modelling tool ArgoUML (ArgoUML Group 2007). It
is less refined than WebML’s WebRatio tool, and can
be difficult to use. This tool currently lacks support
for aspect-oriented modelling, but is subject to future
work; for more details, the reader is referred to Knapp
et al. (2003).

6 Other Languages

There is a wide range of other languages developed
by the academic community to model web applica-
tions, but WebML and UWE appear to be the most
suitable for interactive applications. Most existing
languages allow us to specify the data structure (gen-
erally through entity-relationship diagrams), the nav-
igational structure, and some aspects of the presen-
tational structure; but generally fail to handle web-
specific concepts such as events, scripting or sessions.
We will briefly discuss two further languages, W2000
and OOWS, which appear to be the most suitable and
popular approaches after WebML and UWE.



6.1 W2000

W2000 (Baresi et al. 2006), derived from the older
Hypermedia Design Method (HDM: Garzotto et al.
1993) and developed with principles from UML, is
a conceptual web modelling language focused on the
development of web applications featuring a business
logic layer. Baresi et al. (2000) suggests that web
applications add dynamics to the conventional web
site dimensions of navigation and information, and
argue that operations should be first class citizens –
a design goal of W2000.

The use of UML interaction diagrams in its ap-
proach of modelling operations is a significant feature,
allowing the description of operations and services in
the web application. It features a MOF meta-model
which provides platform independence, and in the-
ory is easily extended. It allows for an application to
be presented in multiple views through presentation
models, which can be created from OCL-like business
rules (Baresi, Colazzo & Mainetti 2005).

The most significant deficiency for modelling RIAs
in W2000 is its lack of client-side support, though
it stands to reason this could be achieved through
extensions. It provides no explicit support for users
or security, except through extending its operational
models. A limited lifecycle concept could also be em-
ulated this way.

W2000 is supported by an unreleased prototype
Eclipse extension as a CASE tool, but the lack of
released software limits W2000’s viability as a web
application modelling platform.

6.2 OOWS

OOWS (Pastor et al. 2006) is a conceptual web mod-
elling approach focused on identifying users in their
systems and their use cases, and the elements within
the resulting web pages. Due to its focus as a con-
ceptual (as opposed to a computational) approach,
OOWS lacks any support for operational features
such as events, web browsers, lifecycles, security, mes-
saging or verification.

Users are first-class citizens in the model, repre-
sented in a hierarchy, but the lack of operation sup-
port limits the expressibility of their abilities and per-
missions. The OOWS system supports databases, but
only in a directly relationally-mapped way. It pro-
vides a basic presentational model through the use of
abstract information units (AIUs), but the process of
translating this to a functional web page appears to
require a lot of manual work.

Standards support in OOWS is limited to the use
of some UML diagrams, and the OASIS formal lan-
guage for modelling semantics (Pastor et al. 2006).
It is supported with the commercial CASE tool Oli-
vaNova, which aims to be platform-independent over
multiple server languages (CARE Technologies 2007).

Clearly OOWS falls short of modelling the ma-
jority of the requirements we have identified, and as
such, we refer the reader to Pastor et al. (2006) for
more information on the language.

6.3 Others

We are aware of many other existing web modelling
languages, such as Araneus (Merialdo et al. 2003) and
OOHDM (Rossi & Schwabe 2006), but these are gen-
erally quite dated and overwhelmingly lack the ability
to model the requirements of RIAs. Space constraints
in this paper limit us to only mention these in passing,
but for comparison purposes, we include our reviews
of these other languages in Table 2.

In a similar light, we know that commercial web
modelling environments exist, but many of these

are proprietary and closed-source; additionally, many
lack the same infrastructure to model these require-
ments. Formal reviews into these commercial tools
remains a point of future work.

From a more formal perspective, Schewe (2005)
presents web applications (”Web Information Sys-
tems”) as a triplet of issues: content, navigation and
presentation. It allows a system to be described in
terms of stories and actions, using user roles for per-
sonalisation and security support, and allows defining
pre- and post-conditions on actions in the system. By
defining the application mathematically, we can for-
mally reason about the system for optimisation and
verification, and allows us to detect errors such as
dead links. This approach looks promising but cur-
rently lacks support for important web concepts such
as scripting and sessions, and lacks software or stan-
dards support.

6.4 Feature Comparison

We can summarise our major model language reviews
into a simple feature matrix, in which we describe
each feature with subjective rankings of No Support
(indicated with a hyphen) to Excellent. This matrix
is presented in Table 2.

7 Discussion

By reviewing our work, we can clearly see that the
most urgent features WebML lack are an events
model, more control over the web browser, and script-
ing support. Further research is required to see if
the WebML model could handle such a major revi-
sion. The lack of meta-modelling support is a serious
shortcoming; this lack of support will hinder its inte-
gration with other tools and acceptance in the wider
community. WebML also requires more development
in terms of verification support.

Since it provides less functionality than WebML,
UWE appears to require more work to handle our pro-
posed concepts, but initially presents a cleaner model
of a web application. It’s meta-model support has
already proven successful, with the easy integration
into the ArgoUML CASE tool. It may handle our
extensions more robustly, especially with its ability
to successively refine detail in its model. However an
extended UWE model may simply become too large,
due to its UML roots.

The other languages we have briefly mentioned
earlier simply do not have the necessary structure to
handle such extensions, and we expect they would re-
quire major work or reimplementation to handle these
concepts. Generally, the lack of an event model in a
web modelling language critically limits the express-
ibility of the language to describe interactive web ap-
plications or RIAs, and modelling the client-side is
similarly vital.

7.1 Related Work

Preciado et al. (2005) is similar to our paper, by re-
viewing existing hypertext and hypermedia languages
for their suitability to model RIAs. However, this re-
search is concerned more with hypermedia concepts
than hypertext, such as visual continuity and mul-
timedia support; our paper deals with web applica-
tion concepts, such as session support and document
scripting.

Gu et al. (2002) reviews existing languages with
respect to a list of functional and informational ar-
chitecture requirements for web modelling languages.
It is concerned only with the visual model, and has no
regard for interactive concepts or the distributed web.



The review also misses web-specific concepts such as
events and sessions, and mentions emails and users
very briefly.

Atterer (2005) reviews the usability of the UWE
and OO-H languages, in terms of the usability of the
software tool, and the generated websites themselves.
It finds that existing languages do not focus on the
usability of the individual pages, and current Web En-
gineering takes place at a much greater level of detail
than classical Software Engineering, making the de-
velopment process more complex and work-intensive.

Schwabe (2001) contains case studies of the imple-
mentation of a conference management web applica-
tion, published as part of IWWOST’01. This study
was implemented with many modelling languages, but
no overall comparison of the results was made, and
such a review would be a useful discussion to have in
the future.

Fraternali (1999) is a comprehensive survey of
most research projects and commercial tools in 1999,
and their ability to model web sites. It covers ba-
sic web requirements such as platform independence,
code generation and some degree of developing pre-
sentational models, but lacks support for all new web
concepts, such as sessions, scripting or events.

7.2 Future Work

This paper is the first publication in a doctoral re-
search programme to develop a web modelling lan-
guage to describe interactive web applications. With
our review of existing academic languages, we have
identified their respective strengths and weaknesses,
which will allow us to decide whether a language ex-
tension is appropriate. Another option is to prototype
a new language, which would have built-in support
for the requirements detailed in Section 3. These two
options remain the focus of our future work.

We have focused our review on academic languages
only, and likewise, a review of commercial web devel-
opment tools would be useful. Existing papers that do
just this (such as Fraternali 1999) are dated and lack
concern for modelling the interactive requirements of
RIAs.

One interesting tangential question raised is the
appropriate development process for web applica-
tions. Languages like WebML advocate an iterative
waterfall process, followed by deployment and main-
tenance; it remains to be seen if this remains appro-
priate, given the current approach of releasing web
applications early and updating regularly, which is
strikingly similar to Agile development.

References

ArgoUML Group (2007), ‘ArgoUML’.
URL: http://argouml.tigris.org

Atterer, R. (2005), Where Web Engineering Tool Sup-
port Ends: Building Usable Websites, in ‘SAC
’05: Proceedings of the 2005 ACM symposium on
Applied computing’, ACM Press, New York, NY,
USA, pp. 1684–1688.

Baresi, L., Colazzo, S. & Mainetti, L. (2005),
First Experiences on Constraining Consistency and
Adaptivity of W2000 Models, in ‘SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied
computing’, ACM Press, New York, NY, USA,
pp. 1674–1678.

Baresi, L., Colazzo, S., Mainetti, L. & Morasca, S.
(2006), W2000: A Modelling Notation for Complex
Web Applications, in E. Mendes & N. Mosley, eds,
‘Web Engineering’, Springer, pp. 335–364.

Baresi, L., Fraternali, P., Tisi, M. & Morasca, S.
(2005), Towards Model-Driven Testing of a Web
Application Generator, in ‘ICWE’, pp. 75–86.

Baresi, L., Garzotto, F. & Paolini, P. (2000), From
Web Sites to Web Applications: New Issues for
Conceptual Modeling, in ‘ER ’00: Proceedings
of the Workshops on Conceptual Modeling Ap-
proaches for E-Business and The World Wide Web
and Conceptual Modeling’, Springer-Verlag, Lon-
don, UK, pp. 89–100.

Baumeister, H., Knapp, A., Koch, N. & Zhang,
G. (2005), Modelling Adaptivity with Aspects, in
‘ICWE’, pp. 406–416.

Bellettini, C., Marchetto, A. & Trentini, A. (2005),
TestUml: User-Metrics Driven Web Applications
Testing, in ‘SAC ’05: Proceedings of the 2005 ACM
symposium on Applied computing’, ACM Press,
New York, NY, USA, pp. 1694–1698.

Bozzon, A., Comai, S., Fraternali, P. & Carughi,
G. T. (2006), Conceptual Modeling and Code Gen-
eration for Rich Internet Applications, in ‘ICWE
’06: Proceedings of the 6th international confer-
ence on Web engineering’, ACM Press, New York,
NY, USA, pp. 353–360.

Brambilla, M., Ceri, S., Comai, S. & Tziviskou, C.
(2005), Exception handling in workflow-driven Web
applications, in ‘WWW ’05: Proceedings of the
14th international conference on World Wide Web’,
ACM Press, New York, NY, USA, pp. 170–179.

Brambilla, M., Ceri, S., Fraternali, P. & Manolescu,
I. (2006), ‘Process Modeling in Web Applications’,
ACM Trans. Softw. Eng. Methodol. 15(4), 360–409.

CARE Technologies (2007), ‘OlivaNova: Products
Overview’.
URL: http://www.care-t.com/products/index.asp

Ceri, S., Daniel, F., Matera, M. & Facca, F. M.
(2007), ‘Model-driven development of context-
aware Web applications’, ACM Trans. Inter. Tech.
7(1), 2.

Ceri, S., Fraternali, P. & Bongio, A. (2000), Web
Modeling Language (WebML): A Modeling Lan-
guage for Designing Web Sites, in ‘Proceedings of
the 9th international World Wide Web conference
on Computer networks’, North-Holland Publishing
Co., Amsterdam, The Netherlands, The Nether-
lands, pp. 137–157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M.,
Comai, S. & Matera, M. (2002), Designing Data-
Intensive Web Applications, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Ceri, S., Fraternali, P., Matera, M. & Maurino, A.
(2001), Designing Multi-Role, Collaborative Web
Sites with WebML: a Conference Management Sys-
tem Case Study, in ‘IWWOST’01 Workshop’, Va-
lencia, Spain, pp. 130–152.

Cuaresma, M. J. E. & Koch, N. (2006), Metamodeling
the Requirements of Web Systems, in ‘WEBIST:
Proceedings of the Second International Confer-
ence on Web Information Systems and Technolo-
gies’, pp. 310–317.

Eclipse Foundation (2007a), ‘Eclipse Modeling: Java
Emitter Templates’.
URL: http://www.eclipse.org/emft/projects/jet/

Eclipse Foundation (2007b), ‘Eclipse.org Home’.
URL: http://www.eclipse.org



Fraternali, P. (1999), ‘Tools and approaches for devel-
oping data-intensive web applications: a survey’,
ACM Comput. Surv. 31(3), 227–263.

Garrett, J. J. (2005), Ajax: A New Approach to Web
Applications, Technical report.
URL: http://www.adaptivepath.com/publications/
essays/archives/000385.php/

Garzotto, F., Paolini, P. & Schwabe, D. (1993), ‘HDM
– A Model-Based Approach to Hypertext Applica-
tion Design’, ACM Trans. Inf. Syst. 11(1), 1–26.

Gerber, A. & Raymond, K. (2003), MOF to EMF:
There and Back Again, in ‘eclipse ’03: Proceedings
of the 2003 OOPSLA workshop on eclipse technol-
ogy eXchange’, ACM Press, New York, NY, USA,
pp. 60–64.

Google Inc. (2006), ‘Google Docs’.
URL: http://docs.google.com

Google Inc. (2007), ‘Google Gears’.
URL: http://gears.google.com

Gu, A., Henderson-Sellers, B. & Lowe, D. (2002), Web
Modelling Languages: The Gap Between Require-
ments and Current Exemplars, in ‘Proceedings Of
The Eighth Australian World Wide Web Confer-
ence’.

Holzmann, G. J. (1997), ‘The Model Checker SPIN’,
Software Engineering 23(5), 279–295.

Jackson, D. (2006), Software Abstractions: Logic,
Language, and Analysis, Cambridge, Mass.

Jouault, F. & Kurtev, I. (2006), On the architectural
alignment of ATL and QVT, in ‘SAC ’06: Pro-
ceedings of the 2006 ACM symposium on Applied
computing’, ACM Press, New York, NY, USA,
pp. 1188–1195.

Knapp, A., Koch, N., Moser, F. & Zhang, G. (2003),
ArgoUWE: A Case Tool for Web Applications, in
‘First Int. Workshop on Engineering Methods to
Support Information Systems Evolution (EMSISE
2003)’.

Koch, N. (2007), ‘Classification of Model Transfor-
mation Techniques Used in UML-based Web Engi-
neering’, Software, IET 1(3), 98–111.

Koch, N. & Kraus, A. (2002), The Expressive Power
of UML-based Web Engineering, in ‘IWWOST’02’,
pp. 105–119.

Kraus, A. & Koch, N. (2002), Generation of Web Ap-
plications from UML Models using an XML Pub-
lishing Framework, in ‘IDPT-2002: Integrated De-
sign and Process Technology’.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S.
& Fraternali, P. (2005), ‘Model-driven design and
deployment of service-enabled web applications’,
ACM Trans. Inter. Tech. 5(3), 439–479.

Merialdo, P., Atzeni, P. & Mecca, G. (2003), ‘De-
sign and Development of Data-Intensive Web Sites:
The Araneus Approach’, ACM Trans. Inter. Tech.
3(1), 49–92.

Moreno, N., Fraternalli, P. & Vallecillo, A. (2006), A
UML 2.0 profile for WebML modeling, in ‘ICWE
’06: Workshop proceedings of the sixth interna-
tional conference on Web engineering’, ACM Press,
New York, NY, USA.

Object Management Group (OMG) (2003), Model-
Driven Architecture Guide, v1.0.1, Technical
report.
URL: http://www.omg.org/cgi-bin/doc?omg/03-
06-01

Object Management Group (OMG) (2005a), Unified
Modeling Language (UML): Superstructure Speci-
fication, v2.0, Technical report.
URL: http://www.omg.org/cgi-bin/doc?formal/
05-07-04

Object Management Group (OMG) (2005b), XML
Metadata Interchange (XMI), v2.1, Technical
report.
URL: http://www.omg.org/technology/docu-
ments/formal/xmi.htm

Object Management Group (OMG) (2006), Meta
Object Facility (MOF) Core Specification, v2.0,
Technical report.
URL: http://www.omg.org/cgi-bin/doc?formal/
2006-01-01

Paschke, A., Kozlenkov, A., Boley, H., Tabet, S.,
Kifer, M. & Dean, M. (2007), Reaction RuleML,
Technical report.
URL: http://ibis.in.tum.de/research/Reaction-
RuleML/

Pastor, O., Fons, J., Pelechano, V. & Abrahão, S.
(2006), Conceptual Modelling of Web Applications:
The OOWS Approach, in E. Mendes & N. Mosley,
eds, ‘Web Engineering’, Springer, pp. 277–302.

Preciado, J. C., Linaje, M., Sanchez, F. & Comai,
S. (2005), Necessity of Methodologies to Model
Rich Internet Applications, in ‘WSE ’05: Proceed-
ings of the Seventh IEEE International Symposium
on Web Site Evolution’, IEEE Computer Society,
Washington, DC, USA, pp. 7–13.

Regan, B. (2005), Best Practices for Accessible Flash
Design, Technical report.
URL: http://www.adobe.com/resources/accessibil-
ity/best practices/best practices acc flash.pdf

Rewerse Working Group I1 (2006), R2ML – The
REWERSE I1 Rule Markup Language, Technical
report.
URL: http://oxygen.informatik.tu-cottbus.de/
rewerse-i1/?q=R2ML

Rossi, G. & Schwabe, D. (2006), Model-Based
Web Application Development, in E. Mendes
& N. Mosley, eds, ‘Web Engineering’, Springer,
pp. 303–333.

Schewe, K.-D. (2005), The Challenges in Web Infor-
mation Systems Development in 15 Pictures (In-
vited Talk), in ‘ISTA’, pp. 204–215.

Schwabe, D., ed. (2001), First International Work-
shop on Web-Oriented Software Technology.

Tabet, S., Bhogaraju, P. & Ash, D. (2000), Universal
Rule Markup Language, Technical report.
URL: http://home.comcast.net/ stabet/urml.html

Taentzer, G. (2003), AGG: A Graph Transformation
Environment for Modeling and Validation of Soft-
ware, in ‘Proc. Tool Exhibition at Formal Methods
2003’.

The Dojo Foundation (2007), ‘The Dojo Toolkit’.
URL: http://dojotoolkit.org/



van den Broecke, J. (2002), Pushlets White Paper,
Technical report, Just Object B.V.
URL: http://www.pushlets.com/doc/whitepaper-
all.html

W3C Group (2000), Document Object Model (DOM)
Level 2 Events Specification, Technical report,
W3C Recommendation 13 November 2000.
URL: http://www.w3.org/TR/DOM-Level-2-
Events/

W3C Group (2004), Document Object Model (DOM)
Level 3 Core Specification, Technical report, W3C
Recommendation 07 April 2004.
URL: http://www.w3.org/TR/DOM-Level-3-
Core/

W3C Group (2007), Simple Object Access Protocol
(SOAP) Version 1.2, Technical report, W3C Rec-
ommendation 27 April 2007.
URL: http://www.w3.org/TR/soap12-part1/

WebRatio Group (2007a), ‘WebRatio’.
URL: http://www.webratio.com

WebRatio Group (2007b), ‘WebRatio AJAX Exten-
sion’.
URL: http://www.webratio.com/WebRatio-
AJAX.do

Zhang, G., Baumeister, H., Koch, N. & Knapp, A.
(2005), Aspect-Oriented Modeling of Access Con-
trol in Web Applications, in ‘6th Int. Workshop As-
pect Oriented Modeling (AOM’05)’, Chicago, USA.


